SNS Information-based Network Control System developed on FLARE Experiment Environment

Haruka Yanagida
Ochanomizu University
Bunkyo, Tokyo, Japan
haruka@ogl.is.ocha.ac.jp

Akihiro Nakao
University of Tokyo
Bunkyo, Tokyo, Japan
nakao@iii.u-tokyo.ac.jp

Shu Yamamoto
University of Tokyo
Bunkyo, Tokyo, Japan
shu@iii.u-tokyo.ac.jp

Saneyasu Yamaguchi
Kogakuin University
Shinjuku, Tokyo, Japan
sane@cc.kogakuin.ac.jp

Masato Oguchi
Ochanomizu University
Bunkyo, Tokyo, Japan
oguchi@is.ocha.ac.jp

Abstract—To achieve network availability in disaster situations, we propose the traffic control system based on SNS information. In order to utilize the data of packet payload obtained from SNS, Deeply Programmable Network (DPN) is needed. In this paper, we implement and evaluate the proposed method with FLARE switch and achieve more flexible control of the network.

Index Terms—SDN; OpenFlow; DPN; FLARE; SNS;

I. INTRODUCTION

When the Great East Japan Earthquake occurred in 2011, network disconnection occurred in some areas. This event has increased the necessity of a system that can grasp all network conditions immediately and is entirely automatic in Japan. Several researchers have applied SDN and OpenFlow to wide area networks to centralize the control of network devices using a software controller. However, the following two challenges must be considered. First is the difficulty of detecting failure by only monitoring using sensors inside of network when the target area is wider. Second is the limit of programmability of SDN. SDN enables control plane (C-plane) being programmable, but the data plane (D-plane) is NOT programmable and still has a hardware component.

In order to address these challenges, we propose the traffic control system based on Social Networking Service (SNS) information in a Deeply Programmable Network (DPN). In addition to the monitoring, using real-time SNS information to detect network failures from outside of network devices [1] is one of the solution for the first issue. It can specify the area of network failure and grasp all network conditions immediately. The solution for the second challenge is the DPN. DPN is the concept of a software-defined D-plane, meaning the full programmability of a network. DPN enables to access the data of packet payload obtained from SNS. Therefore for example QoS control for every application becomes possible. In disaster situations, it is assumed that prioritizing important traffic, such as mail, phone, or SNS, rather than mobile video traffic is effective. In this paper, we use the FLARE switch [2] which was developed to achieve the DPN environment. In FLARE, the D-plane is implemented with Click software module router which is a language that defines the operation of network device. This switch creates virtual networks which is called Slice composed of virtual switches written in Click. Figure 1 shows network environment including the proposed system. As shown in this figure, SNS information is collected and analyzed. Based on those, the Network Controller makes a decision for routing and bandwidths control for each slices where are applied each applications, so that it sends a direction to switches on the network.

II. OVERVIEW OF THE PROPOSED METHOD

The process flow of the proposed method is as follows. All processes are executed automatically and autonomically.

1. Receive network failure information by analyzing SNS
 By the system discussed in [1], we analyze Twitter in real-time and detect network failure with high accuracy.

2. Update the costs of links
 For example, the default costs of all links are 1. If there are more than 20 tweets including the mapped area name in extracted tweets, increment the costs by 1. Updating is performed at 60-seconds intervals.

3. Optimal route search
 The minimum cost of a route is set as the optimal route by Dijkstra’s algorithm.

4. Route resetting
 The optimal route is reset by applying flow entry to the switch through REST-API.

5. Application QoS control
 We classify applications and assign one application to one slice [3]. For each slice, set D-plane as optimal bandwidth programmed by Click module router.

III. EXPERIMENTS AND EVALUATION

A. FLARE Environment

Figure 2 shows experiments environment. 1G indicates 1Gbps connection, 10G indicates 10Gbps connection. The controller is implemented on this FLARE Central server. Table I shows the specifications of the machines.
B. Verifying the Proposed System Experiment

We verify our proposed system of (1)-(4). In this experiment, (5) is operating OpenFlow 1.3 by the Ofswitch module of Click. Accordingly, the SDN level experiment is executed on FLARE, which has the capability of DPN. In this experiment, we use actual tweets from 14:00 to 15:00 on 11 March 2011 when the Great East Japan Earthquake occurred. We map from FLARE Switch1 to 4 to "Iwate", "Kyoto", "Tokyo", "Fukuoka", respectively. For example, the start point of communication is set to h1 near Iwate, and the goal point is set to h5 near Tokyo. Through this experiment, we verify the proposed system can switch the routes which go around the disaster area in a disaster situation based on Twitter information. Specific operations are as follows.

D. RTT Evaluation Experiment

To see the time of switching the routes, RTT are measured using a program sending Ping every one millisecond. The outcome is shown in Figure 4. Approximately 20-30 ms RTT to switch routing can be seen because the packets do not take a new right path while route is in the middle of switching.

IV. Conclusion

In this paper, we propose programmable network control based on SNS information, which optimizes traffic for each application automatically and autonomically. As a contribution, we built a system for switching routes to avoid a disaster area based on Twitter information, and achieved almost full performance of hardware without overhead. In addition, we confirmed that our system can be operated with sufficient performance on a wide area network from RTT. As a next step, we plan to extract more detailed situations of users from Twitter and achieve unique QoS control reflecting those.

ACKNOWLEDGMENT

This work is partially supported by the Strategic Information and Communications R&D Promotion Program (SCOPE).

REFERENCES

