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Abstract— iSCSI is one of the most popular protocols among 
the storage area network (SAN) working on an IP network. 
iSCSI is a standard to encapsulate a SCSI command into a 
TCP/IP packet, thus we can make an access to a storage 
system with commoditized IP devices only. In this paper, 
iSCSI sequential write access for a remote backup system is 
focused. It is well known that iSCSI experiences 
performance degradation under a high latency environment. 
The storage access by iSCSI has multiple hierarchical 
protocols. Due to this complicated structure, it is very 
difficult to identify the performance bottleneck that causes 
the degradation. Therefore, system tools which can analyze 
the complicated layered structure are required. We have 
developed system tools that enable us to monitor the 
hierarchical protocols. As a result, we have identified the 
cause of the iSCSI performance degradation problem. We 
then fixed the problem and confirmed that one can obtain 
the performance close to the theoretical limit.

Index Terms—iSCSI, SAN, TCP, Kernel, Optimization, 
Performance

I. INTRODUCTION

Recently, with the rapid spread of broadband networks 
and the improved technologies of computer system, a 
large volume of data is stored and managed in a storage 
system in many business fields. In addition, remote data 
backup is regarded as an essential system to protect 
important data from a natural disaster or a terrorist attack. 
High speed data access technology to a storage device 
over long distance is a key to realize the remote backup 
system.

However, due to rapid increase of a volume of data, 
the storage management cost is one of the most serious 
issues of storage systems. Storage Area Network (SAN) 
is a high-speed network that connects multiple storage 
devices to servers. Because SAN allows the storage to be 
consolidated and managed in a centralized manner, it is 
widely used in storage area for an efficient management 

of many storage devices. FC-SAN, which is widely used 
already, connects servers and storage with Fibre Channel.

Due to defects in FC-SAN including its hardware costs 
and a distance limitation (up to about 10km), significant 
barriers exist in the introduction of FC-SAN. For this 
reason, IP-SAN configured with inexpensive Ethernet 
and TCP/IP is introduced. One of the candidates for the 
technology is iSCSI [1], by which one can use SCSI 
protocol over an IP network. iSCSI encapsulates a SCSI 
command, which is widely used in Direct Attached 
Storage (DAS), within a TCP/IP packet and transports the 
volume of data between server (Initiator) and storage 
(Target). In the future, since the Gigabit and 10 Gigabit 
class lines are expected to be more popular by 
development of the Internet, iSCSI will be effective 
furthermore.

However, iSCSI has an extremely complicated 
structure, i.e. "SCSI/iSCSI/TCP/IP/Ethernet", as shown in 
Figure 1. In addition, since it transmits the burst data, the 
degradation of the performance is remarkable in the high 
latency environment. It is pointed out in previous papers 
that the iSCSI has a problem when it is used over long 
distance, i.e. high latency environment due to the
complicated protocol stack [2,3]. To mitigate the problem, 
several methods to improve the iSCSI throughput were 
proposed [2-4]. In our previous work [3], we found that 
the obtained performance for iSCSI sequential write is far 
below than the theoretically expected value in the high 
latency environment.

Figure 1. Configuration of iSCSI
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Basically, iSCSI throughput cannot reach beyond the 
limit performance of TCP/IP which is laid at the lower 
layer. Thus, in iSCSI remote storage access, optimization 
not only in iSCSI layer but also in other layers is 
expected to improve iSCSI performance.

In this work, we have developed several tools to 
analyze the system to find the cause of the performance 
degradation. In the case of remote backup, the amount of 
writing data is more than that of reading. In addition, it 
should sometimes be assumed that only a non-customized 
system can be used for iSCSI Target. Thus in our 
research work, iSCSI software at Initiator is optimized. 
By the optimization, we have achieved extremely good 
performance of iSCSI sequential access in a high latency 
environment.

The rest of the paper is organized as follows. Section II
describes a research background. Basic optimization of 
iSCSI acces is shown in Section III. Section IV describes 
preparation for analysis including an introduction of our
system tools. Through Section V to VIII, the cause of the 
performance degradation is analyzed from various points 
of view. Finally, Section IX presents the conclusion.

II. BACKGROUND OF OUR RESEARCH

A. Experimental Environment
In our previous work [3], we applied various 

techniques, including parameter optimization for iSCSI, 
TCP, and network interface card, to improve the iSCSI 
write access performance under high latency environment. 
[4, 5] The schematic diagram of our experimental setup is 
shown in Figure 2. We have investigated a point to point
iSCSI connection. Initiator and Target are workstations 
which have 1.6GHz Quad Core Intel Xeon, respectively. 
They are connected with Gigabit Ethernet and TCP/IP 
connection is established between them. As Target 
storage, SAS disks are used with RAID0 configuration. 
As an operating system, Linux 2.6.18-8 is used. As for 
iSCSI software, open iSCSI [6] and iSCSI Enterprise 
Target [7] are used. We have artificially inserted delay
between Initiator and Target by using a network 
simulator.

iSCSI initiator
Intel Xeon 1.6GHz Quadcore
Linux kernel 2.6.18-8
Open iSCSI

iSCSI target
Intel Xeon 1.6GHz Quadcore
Linux kernel 2.6.18-8
iSCSI Enterprise Target

Network Simulator
Artificial delay insertion

Figure 2. Schematic diagram of experimental setup

B. TCP Congestion Window Control Algorithms
TCP is used as transport layer in iSCSI. TCP packet 

transmission is controled by window size. There are two 

window sizes, that is, advertisement window and 
congestion window. Advertisement window is a 
parameter notified from a receiver to a sender, which 
informs the remained buffer size of the receiver. On the 
other hand, congestion window is a parameter controlled
by a sender, which restrict the number of packets in order 
to avoid network congestion.

Basically, TCP congestion window is controlled by 
slow start phase when a packet transmission begins. This 
increases the size of congestion window as an 
exponential manner. As a result, the volume of traffic 
increases and congestion might be caused. In order to 
prevent the congestion, when the size of congestion 
window exceeds slow start threshold, the congestion 
window becomes to be controlled by congestion 
avoidance phase, in which the size of congestion window 
increases as a linear manner. After an error is detected, 
the size of congestion window decreases drastically. By 
repeating these phases, the behavior of the congestion
window becomes saw tooth pattern usually.

The state transition of Linux TCP is shown in Figure 3. 
In Linux TCP, when the condition is normal, the 
congestion window is increased. On the other hand, the 
condition is judged as abnormal if an error occurs, and 
the congestion window is decreased in such a case. The 
causes of errors include Local Congestion (CWR) which 
means the buffer of sender’s device driver is full, 
receiving duplicated ACK or SACK (Recovery), and 
detecting timeout (Loss). In addition, in the case of Linux 
TCP implementation, once the congestion window is set 
during a communication, it is not changed unless the 
larger volume of data than it is transmitted, and 
throughput becomes constant in this case.

duplicate ACK,
SACK

Increase of
Congestion Window

Decrease of
Congestion Window

State:Loss

State:Recovery

State:CWR
Normal state

Unusual state

State:Open

Figure 3. State transition of Linux TCP

There are various congestion window control 
algorithms designed for TCP. In Linux TCP, some of 
them are implemented, and the algorithm can be changed 
among them only with a command. They include Reno, 
Binary Increase Congestion control (BIC), Westwood, 
and Hamilton TCP (H-TCP).

Reno is a classic algorithm, and plenty of algorithms 
are designed based on Reno. Reno detects congestion 
with packet loss, and the available bandwidth is decided 
based on the value when a packet loss occurs. That is to 
say, when a sender receives three consecutive duplicated 
ACKs, this is judged as a packet loss, and the congestion 
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window becomes half. The congestion window increases 
one on every RTT, afterward. Thus, the congestion 
window becomes larger gradually, and falls sharply in 
Reno.

BIC is a default algorithm in our experimental 
environment. BIC executes binary search to find an 
available bandwidth, while general TCP congestion 
control performs linear search.

Westwood is designed for an environment in which a 
packet loss occurs frequently. This is developed based on 
Reno, optimized for wireless communications.

H-TCP is recommended suitable for a broadband and 
long-delay environment. This algorithm is designed to 
recover quickly to be the original state after congestion.

C. Process of TCP Transmission
In the case of TCP implemented in Linux OS, socket 

buffers which store the sending data are connected to a 
queue and wait to be processed as shown in Figure 4. 
Socket buffer cannot be freed until the time of receiving 
ACK. 

Sending queue is a member of sk_write_queue in sock 
structure defined in the kernel source code. A pointer of 
sk_send_head points the socket buffer whose data will be 
sent next. In the socket buffer, a part between a queue 
head and sk_send_head is in a state whose data has been 
sent out but cannot be freed because ACK is not received 
yet. Socket buffers behind the point of sk_send_head are 
in a queue whose data will be sent out afterward. 
sk_send_head is shifted when each segment is transmitted. 
In this paper, the state of queue length (between the 
queue head and the tail) is discussed in the section VII.

sk_buf

cannot free queue send queue

sk_send_head tail

new s ending data fro m h eresen t segmen t

queue freed

wait ing ACK
ACK received

sk_buf

cannot free queue send queue

sk_send_head tail

new s ending data fro m h eresen t segmen t

queue freed

wait ing ACK
ACK received

Figure 4. TCP Socket Buffer

III.  BASIC OPTIMIZATION

A. iSCSI Layer Optimization
iSCSI layer has a lot of parameters[4]. Thay are 

exchanged between Initiator and Target during the 
negotiation phase. In our research work, we have 
optimized iSCSI parameters at first. The optimized 
parameters, compared with default settings, are shown in 
Table 1.

Table 1. Configuration of iSCSI

Default Optimized

Target side

InitialR2T Yes No

ImmediateData No Yes

FirstBurstLength 65536 1048576

MaxBurstLength 262144 1048576

MaxRecvDataSegmentLength 8192 1048576

Initiator side

node.conn[0].iscsi.MaxRecvDataSegmentLength 131072 1048576

node.session.iscsi.FirstBurstLength 262144 1048576

B. Ethernet Layer Optimization
In order to optimize iSCSI remote storage access

further, NIC parameters of Ethernet are optimized. Intel 
PRO/1000PT is used as NICs in our experiment. The 
device driver of this NIC provides parameters for 
optimization. The optimized NIC parameter settings are 
shown in Table 2.

Table 2. Optimized NIC parameter settings

Setting

Target side

MTU 9000

Initiator side

MTU 9000

Txqueuelen 3000

TxDescriptors 4096
FlowControl Disabled

C. Congestion Window Control Algorithms
In order to investigate the effectiveness TCP 

congestion window control algorithms, several 
algorithms are compared in the case of socket 
communication. As TCP congestion window control 
algorithm, Reno, BIC, Westwood, and H-TCP are used 
for the comparison. The result of comparison shown in 
Figure 5. Measured time is 1000sec in this case.
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Figure 5. Throughput comparison using various algorithms (1000[s])
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Figure 6 shows the result of the same experiment with 
30sec measured time, in order to investigate the influence 
of the beginning phase of each algorithm.
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Figure 6. Throughput comparison using various algorithms (30[s])

According to Figure 5, the difference of algorithms can 
be observed in a high latency environment. Figure 6 
shows this difference is mostly caused in the beginning 
phase of each algorithm.

Although the difference of throughput among 
congestion window control algorithms has been observed 
in the case of socket communication, throughput is 
almost the same with all algorithms in the case of iSCSI 
access. Therefore, we have used the default BIC 
algorithm in the following iSCSI experiments.

D. Result of Basic Optimization
Figure 7 shows the result of basic optimization, in 

which iSCSI layer optimization is most effective. The 
theoretical limit of the throughput is also given in the 
figure. Iperf [8] is used for the measurement of 
performance in socket access, and Network Recorder, 
protocol analyzer of ClearSight Network [9], is used for 
the measurement of performance in iSCSI storage access. 
In our experiment, the advertised window is set as the 
size enough for the communication.

Figure 7. iSCSI sequential write throughput in high latency 
environment

One can see in Figure 7 that the iSCSI performance is 
dramatically improved by the techniques and the obtained 

throughput is in good agreement with the theoretical 
value if round trip time (RTT) is less than 5ms. However, 
even if the optimization is used, the throughput is getting
significantly worse than the theoretical value once RTT 
exceeds the 5ms limit. We have not understand why there 
is the degradation in the high latency area. We will solve 
the question in the following sections.

IV.  PREPARATION FOR ANALYSIS

A. System Tools for Analysis
To identify the exact cause of the degradation, we have 

developed several tools. We developed a kernel monitor 
tool, a packet monitor tool, and data analysis tool, as 
shown in Figure 8. The kernel monitor tool allows us to 
monitor kernel parameters at Initiator. The kernel 
parameters include TCP congestion window (CWND) 
size, advertisement window size, and socket buffer queue 
size. Generally, user programs cannot recognize the size 
of CWND and socket buffer queue because the size is a 
parameter controlled in a Kernel space of an operating 
system. Therefore we have inserted monitor functions in 
TCP source code and implemented a recording 
mechanism of TCP parameters within a Linux Kernel 
memory space, so that they are accessible from User 
space. With this mechanism, we can confirm TCP 
parameters by reading a special file for accessing Kernel 
memory space.

Parameter settings:
- SCSI/ iSCSI parameters
- TCP/IP parameters
- Ethernet parameters

Kernel monitor
- log trace
- time stamp
- monitoringparameters

Packet monitor
- TCPDump command
- Network analyzer

Network simulator

Network analyzer

Ethernet

SCSI

IP

TCP

iSCSI

storage
(Target)

 server
(Ini tiator)

Based on
Monitoringdata

Figure 8. An overview of system tools for analysis

The packet monitor tool captures the packets received 
and sent out at the Initiator. The data analysis tool can 
process the information obtained from the kernel and 
packet monitor tools. In this way, we can directly or 
indirectly observe the procedures of various 
communication protocols that are executed during iSCSI 
transmission. In the followings, we will explain the 
analyses by means of the tools to identify the exact cause 
of the iSCSI throughput degradation under high latency 
environment.
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B. Model of iSCSI Sequential Write Access
The bottleneck that causes iSCSI performance 

degradation in a higher latency environment has been 
examined as follows:

First, “dd” command has been used and the packets of 
iSCSI block access have been analyzed by using protocol 
analyzer. However, packets of various block sizes have 
been observed in the network in this case. Therefore, for 
the verification process of our model, “sg_dd” command 
is used [10]. While there is compatibility between 
“sg_dd” command and “dd” command, “sg_dd” 
command can access target with the specified size of the 
block at SCSI level in iSCSI access. By the 
reconfiguration of our kernel, “sg_dd” command enables 
us to access target with the size of the 4MB maximum. In 
accordance with the change, in iSCSI parameters, values 
of both FirstBurstLength and MaxBurstLength are set to 
4,194,304. In our experimental system, we have 
measured throughput when the access block size is 2MB 
and 4MB, and RTT is 0-50ms.

Figure 9 shows the model of iSCSI write access 
sequence. Ta means data transfer time of sending from 
the first packet to the last one. Tb is time to prepare a 
packet to inform the end of writing on Target side to 
Initiator side.  Tc is an interval until the following write is 
executed. Ta, Tb, Tc, and RTT have been measured by 
the network analyzer with each RTT set at the network 
simulator. We have analyzed of the factor of the 
performance degradation in higher latency by measuring 
each times.

SCSI WRITE 4096KB

DATA 4096K

SCSI XFER Ready

Ta

Tb

Tb

Tc

Ta

Tc

RTT

(Next) SCSI WRITE 4096KB

Initiator Target

RTT

SCSI WRITE 4096KB

DATA 4096K

SCSI XFER Ready

Ta

Tb

Tb

Tc

Ta

Tc

RTT

(Next) SCSI WRITE 4096KB

SCSI WRITE 4096KB

DATA 4096K

SCSI XFER Ready

Ta

Tb

Tb

Tc

Ta

Tc

RTT

(Next) SCSI WRITE 4096KB

Initiator Target

RTT

Initiator Target

RTT

Figure 9. iSCSI write access sequence

According to a measurement result, Tb and Tc are 
constant mostly and RTT is almost the same with the 
value set at the network simulator. However, as Figure 10
shows, Ta increases in proportion to RTT. Therefore, the 
reason why the performance of iSCSI access decreases 
below the theoretical value is that the data transfer time 
of sending packets is proportional to RTT, which is 
constant generally. Thus, what happens in data transfer 
time should be examined in detail.
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Figure 10. Data transfer time in iSCSI write access

V.  ANALYSIS OF PACKET TRANSMISSION

As we described in the previous subsection, the factor 
of iSCSI performance degradation is owing to data 
transfer time in a higher latency environment. Thus, what 
happens during data transfer time is examined in detail by 
using network analyzer.

A. Analysis of Packets on Initiator
We have observed packets sent from Initiator to Target 

with the network analyzer. In this experiment, we have 
set 20ms RTT and 4MB iSCSI access block size. Figure 
11 shows the result. The horizontal axis indicates time, 
and the vertical axis indicates the number of transmission 
packets. In this case, packets with “write10” command 
and “dataout” command are also shown in the graph for 
comparison. The vertical axis of “write10” and “dataout” 
command means nothing but only timing. According to 
Figure 11, it is observed that after packets are transferred 
consecutively within short time, the transmission of 
packet suspends temporarily. This behavior is not 
observed in normal socket access.

Figure 11. Analysis of packet on Initiator

One sequence of Figure 11 is enlarged and shown in 
Figure 12. From Figure 12, the following matters are 
observed: After packets are transferred consecutively 
within short time, the transmission of packet suspends 
temporarily. After constant time, the consecutive 
transmission of packets resumes again. Those intervals 
are about 20ms, which is equal to RTT. 
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When RTT is changed, the intervals are equal to RTT 
again. Therefore, the interval should be always equal to 
RTT.
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Figure 12. An enlarged part of Figure 11

B. Discussion of Packets Transmission Analysis
It has been observed that only TCP ACKs are received 

before the restart of data transmission. According to this 
observation, TCP ACKs should bring about the restart of 
data transmission.

We have set 20ms RTT and 4MB iSCSI access, and 
the packets of iSCSI write access have been analyzed 
with network analyzer. As a result, it is observed that 
after packets are transferred consecutively with short time, 
the transmission of packets suspends temporarily. The 
transmission of packets is intermittent. Therefore, the 
lack of CWND is naturally suspected to suspend the 
transmission of packets. Next, in the following section, 
CWND is examined with our kernel monitor.

VI.  ANALYSIS OF WINDOW SIZE WITH KERNEL
MONITOR

A. Analysis of TCP Advertisement Window
If the advertisement window of TCP is not large 

enough in high latency environment, TCP throughput is 
limited and the gap shown in Figure 12 might be created.  
However, it is revealed by the kernel monitor tool that the 
size of the advertisement window is 5MB. This means 
that the size of the advertisement window is wide enough. 
Therefore, we can conclude that the cause of the gap is 
not advertisement window.

B. Analysis of TCP Congestion Window
It is known that the values of throughput and CWND 

have a close relationship. We have used the TCP CWND 
monitor tool and “tcpdump” command, and observed the 
relationship between CWND and the amount of packets. 
In this experiment, we have set 20ms RTT and 4MB 
iSCSI access block size. Figure 13 shows the result.

In order to transfer 4MB data efficiently, about 3,000 
CWNDs is necessary. However, Figure 13 shows CWND 
is 1,200. The measured CWND is smaller than the value 
which can transfer 4MB packets effectively.

Figure 13. Analysis of CWND using kernel monitor

According to Figure 13, it seems the cause of the 
intermittent packet transmission is that the measured 
CWND is smaller than the value which can transfer 4MB 
packets effectively. However, from the reference of 
Figure 12 and 13, we can find this is not the cause.

The amount of transferred packets in one sequence is 
about 700 as shown in Figure 12, while the value of 
CWNDs is 1,200 as shown in Figure 13. Thus, the 
amount of transferred packets in one sequence is not 
enough size that consumes CWNDs. In addition, it is 
examined whether CWND really remains, by measuring 
the amount of packets on the fly. As a result, maximum 
volume of packets on the network is 1.1MB which is 
smaller than 1.8MB, the amount of packets that consumes 
1,200 CWNDs. This means CWND is not exhausted.

After all, even though CWND is not exhausted, packet 
transmission is not continuous in the case of iSCSI access.

VII.  ANALYSIS OF TCP SOCKET BUFFER

From previous analyses, the cause of intermittent 
packet transmission is neither CWNDs nor advertised 
windows. Therefore, we have analyzed TCP socket buffer 
next.

A. The Comparison of Queue Length in iSCSI Access and 
Socket Access

In the case of socket access, performance is kept to be 
equal even in a high latency environment. However, in 
the case of iSCSI access, performance is degraded in the 
same environment. Therefore, the behavior of queue of 
TCP socket buffer is analyzed by comparing the cases of 
iSCSI access and socket access using kernel monitor. 
RTT is set to be 20ms and 32ms, and access block size is 
set to be 4MB. The advertised window is set to be enough 
size to transfer data. In the case of measuring throughput 
of socket access, Iperf is used. In the case of measuring 
throughput of iSCSI access, “sg_dd” command is used.

The Figures from 14 to 17 show the comparisons of 
the number of transferred packets measured using 
“tcpdump” command with the queue length of socket 
buffer measured using kernel monitor in Initiator. The 
horizontal axis indicates time, the first vertical axis 
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indicates queue length, and the second vertical axis 
indicates the number of transferred packets.

Figure 14. Socket buffer queue length for iSCSI access (RTT = 20ms)

Figure 15. Socket buffer queue length for socket access (RTT = 20ms)

Figure 16. Socket buffer queue length for iSCSI access (RTT = 32ms)

Figure 17. Socket buffer queue length for socket access (RTT = 32ms)

B. The Comparison of Queue Length when RTT = 20ms
From Figure 14, in the case of iSCSI access, it is 

confirmed that the maximum queue length is about 300 
and it is kept between 0 and 300 in the steady state. 
According to Figure 15, on the other hand, it is confirmed 
that maximum queue length is about 1300 in the case of 
socket access, and it is kept between 200 and 300 in the 
steady state. Thus, an obvious difference is observed 
between the behavior of TCP socket buffer in iSCSI 
access and socket access.

C. The Comparison of Queue Length when RTT = 32ms
From Figure 16, in 32ms RTT also, it is confirmed that 

maximum queue length is about 300 in the case of iSCSI 
access, and it is kept between 0 and 300 in the steady 
state.  On the other hand, from Figure 17, it is confirmed 
that maximum queue length is about 1300 in the case of 
socket access, and it is kept between 200 and 300 in the 
steady state. 

Because of the same behavior is observed in 20ms 
RTT and 32ms RTT, we can conclude that the behavior 
of TCP socket buffer in the case of iSCSI access and 
socket access should be different.  

D. Detailed Analysis of Queue in iSCSI Access
In this subsection, the behavior of queue of socket 

buffer in the case of iSCSI access is analyzed in detail. In 
Figure 18 and 19, we investigate it with ACK packets. In 
this case, the vertical axis of ACK means nothing but 
only timing.

Figure 18 shows the behavior of queue in iSCSI access 
in the steady state when RTT is 20ms. This is one 
sequence of 4MB iSCSI access. Received ACK makes 
queue start to increase and packet transmission restart. In 
this case, packet transmission suspends after growth of 
queue stops.

After suspend of packet transmission, ACK from 
Target is received and a part of queue is freed. Because of 
the increased queue, packets can be transferred again. 
However, queue comes to reach the limit again and 
suspend to send packet.

On the other hand, the state of queue in socket access 
is shown in Figure 19. Although the queue stops to 
increase when it reaches to 1,300, packets transmission is 
always continuous. This is considered to be the cause of 
performance difference between the case of iSCSI access 
and that of socket access in a high latency environment.

Therefore, in iSCSI access, available memory for TCP 
socket buffer in the kernel must be smaller than that of 
socket access. As a result, in iSCSI remote storage burst 
access, the waste of socket buffer makes the intermittent 
transmission of data packets.
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Figure 18. An enlarged part of Figure 14
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VIII.  ANALYSIS OF KERNEL CODE

A. An Overview of Kernel Code Analysis
With our system tool, it is possible to record a time 

stamp inside a kernel code during the execution of data 
transmission. That is to say, it is possible to recognize 
where in the kernel code is executed during data 
transmission and how long it takes to execute the specific 
part of the kernel code. Therefore, with this system tool, 
we have analyzed which part of kernel code is executed 
in both cases of iSCSI access and socket access, and 
where the cause of the suspension of data transmission is. 
After the discovery of the location of problem, we have 
inserted a software module for optimization of parameters, 
in order to resolve the problem and achieve good 
performance.

B. Identification of the Position of Problem
A part of Linux kernel code executed in data 

transmission is shown in Figure 20. In both socket access 
and iSCSI access, the execution on the kernel code leads 
to timeout, in the function of schedule() shown in Figure 
20. In the case of socket access, schedule() function in 
line 1415 is executed, while in the case of iSCSI access, 
schedule() function in line 1439 is executed and it leads 
to timeout waiting, and it is finally awaked by ACK after 
RTT. Unnecessary timeout is also observed in iSCSI 
access.

Thus we have traced the kernel code after the 
schedule() function is called with the system tool. This is 
shown in Figure 21.

1400fastcall signed long __schedschedule_t imeout(signedlong timeout)
1401{
1402 structtimer_ listt imer;
1403 unsigned long expire;
1404
1405 switch (t imeout)
1406 {
1407 case MAX_SCHEDULE_TIMEOUT:
1415 schedule() ;
1416 gotoout;
1417 default:
1425 if (t imeout < 0)
1426 {
1427 printk(KERN_ERR"schedule_t imeout: wrong timeout"
1428 "value %lx from %p\n", timeout,
1429 __built in_return_address(0)) ;
1430 current->state = TASK_RUNNING;
1431 gotoout;
1432 }
1433 }
1435 expire = timeout + j if fies;
1436
1437 setup_timer(&timer, process_t imeout, (unsignedlong)current);
1438 __mod_timer(&timer, expire) ;
1439 schedule() ;
1440 del_singleshot_timer_sync(&timer);
1441
1442 timeout = expire- jif fies;
1443
1444 out:

Socket access

iSCSIaccess

1400fastcall signed long __schedschedule_t imeout(signedlong timeout)
1401{
1402 structtimer_ listt imer;
1403 unsigned long expire;
1404
1405 switch (t imeout)
1406 {
1407 case MAX_SCHEDULE_TIMEOUT:
1415 schedule() ;
1416 gotoout;
1417 default:
1425 if (t imeout < 0)
1426 {
1427 printk(KERN_ERR"schedule_t imeout: wrong timeout"
1428 "value %lx from %p\n", timeout,
1429 __built in_return_address(0)) ;
1430 current->state = TASK_RUNNING;
1431 gotoout;
1432 }
1433 }
1435 expire = timeout + j if fies;
1436
1437 setup_timer(&timer, process_t imeout, (unsignedlong)current);
1438 __mod_timer(&timer, expire) ;
1439 schedule() ;
1440 del_singleshot_timer_sync(&timer);
1441
1442 timeout = expire- jif fies;
1443
1444 out:

Socket access

iSCSIaccess

Figure 20. Analysis of kernel source code

tcp_sendmsg
/net/ipv4/tcp.c

sk_wait_event();
sk_stream_wait_memory()

/net/core/stream.c

schedule_timeout();
schedule();

/kernel/timer.c

sk_wait_event()
schedule_timeout();

/net/sock.h

Condition
branch

if (!sk_stream_memory_free(sk))
gotowait_for_sndbuf;

Figure 21. Kernel code trace

According to the trace log, the schedule() function is 
called as a result of a conditional branch, in which 
sk_stream_memory_free() function is included. As 
shown in Figure 22, this function just compares 
parameters of sk_wmem_queued and sk_send_buf and 
returns the larger one. Since we have identified the 
location of conditional branch that leads to timeout, we 
have inserted an appropriate software module for 
optimization of parameters, in order to avoid timeout 
waiting.

static inline int sk_stream_memory_free(struct sock *sk)
{
return sk->sk_wmem_queued< sk->sk_sndbuf;
}

l inux+v2.6.18.5/include/net/sock.h#L446

Figure 22. Conditional branch that leads to timeout waiting
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C. Performance Evaluation
We have measured the throughput for the fixed iSCSI 

access, i.e. iSCSI sequential write with the “optimized 
socket buffer”. The result given in Figure 23 clearly 
shows that the performance is greatly improved compared
to the previous work. Figure 24 and 25 are the diagrams 
for the fixed iSCSI access that are corresponding to 
Figure 12 and 14 respectively. We have confirmed that 
the gap is shortened and the socket buffer size is not 
limited any more.

Figure 23. Improvement of data sending rate in fixed iSCSI access

Figure 24. Data sending rate in fixed iSCSI access

Figure 25. Scoket buffer queue length for fixed iSCSI access

IX.  CONCLUSION

In this paper, we have developed system tools which 
enable us to analyze the detailed behavior of 
communication protocols by analyzing kernel parameters 
as well as packets dispatched and received. With the help 
of these tools, we identified the cause of the problem for 
iSCSI access over long distance. Thus, we have added a 
necessary software module and achieved a very high 
speed iSCSI sequential access, which can be easily 
applicable to various remote data backup services. 

Note that the applicability of the developed tools is not 
limited to the iSCSI remote access.  We believe that the 
tools are powerful enough to monitor and analyze a broad 
range of communication protocols for performance 
improvement as well as trouble shooting.
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