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Abstract

Parallel coordinate plots (PCPs) are among the most useful techniques for the

visualization and exploration of high-dimensional data spaces. They are espe-

cially useful for the representation of correlations among the dimensions, which

identify relationships and interdependencies between variables. However, within

these high-dimensional spaces, PCPs face difficulties in displaying the correla-

tion between combinations of dimensions and generally require additional dis-

play space as the number of dimensions increases. In this paper, we present

a new technique for high-dimensional data visualization in which a set of low-

dimensional PCPs are interactively constructed by sampling user-selected sub-

sets of the high-dimensional data space. In our technique, we first construct

a graph visualization of sets of well-correlated dimensions. Users observe this

graph and are able to interactively select the dimensions by sampling from

its cliques, thereby dynamically specifying the most relevant lower dimensional

data to be used for the construction of focused PCPs. Our interactive sampling

overcomes the shortcomings of the PCPs by enabling the visualization of the

most meaningful dimensions (i.e., the most relevant information) from high-

dimensional spaces. We demonstrate the effectiveness of our technique through
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two case studies, where we show that the proposed interactive low-dimensional

space constructions were pivotal for visualizing the high-dimensional data and

discovering new patterns.

Keywords: visualization, high-dimensional data, parallel coordinate plots.

1. Introduction

Many data analysis tasks can be facilitated by high-dimensional data visu-

alization. For example, it is often helpful to know what sets of dimensions in

the data are correlated or have a significant impact in processes such as cluster-

ing, sampling, or labeling. Another important task is the discovery of hidden

relationships between labels and numeric values in the analysis of labeled high-

dimensional datasets. Several machine learning techniques such as deep neural

networks or association rule mining are useful for this purpose but may require

significant computational time when discovering relationships between labels

and large arbitrary combinations of numeric dimensions. Moreover, in many

application domains, high-dimensional data analysis requires interactive anal-

ysis and decision making by a domain expert to specify the rules between the

labels and the numeric values. Such circumstances arise in important appli-

cation domains such as biomedicine, finance, and social media analysis, where

the a priori characterization and detection of interesting patterns is difficult and

limited due to a lack of domain-specific knowledge as well as the complexity and

dynamic nature of the data. The application of a data visualization framework

is often helpful for these types of problems.

High-dimensional data visualization continues to be an important and ac-

tive research field with several survey papers dedicated to this area [14] [37].

One of these surveys [37] divided the available multi-dimensional data visual-

ization techniques into three categories: animations, two-variate displays, and

multivariate displays. Animation techniques facilitate the dynamic display of

multiple configurations of the high-dimensional data and are commonly applied

to both two-variate and multivariate techniques. Two-variate techniques only

2



visualize the relationships between two variables; an example of such a tech-

nique is the well-known scatterplot (SP). Multivariate visualization techniques

attempt to represent the distribution of all the dimensions in a given dataset

on a single display space. The increasing dimensionality of modern datasets is

spurring the use of multivariate visualization techniques, such as SP matrices

and parallel coordinate plots (PCPs) [17].

A SP matrix consists of multiple adjacent SPs in a grid-like arrangement,

with each SP being identified by its row and column index. The greatest advan-

tage of SP matrices is the high level of familiarity that non-expert users have

with it. However, this visualization technique suffers from few major drawbacks.

Firstly, individual SPs within the display space may be very small if the number

of dimensions of the dataset is very large. In addition, it can be difficult for

humans to visually compare arbitrary pairs of SPs that are distantly placed in

the display space. Several studies aimed at selecting meaningful sets of SPs and

effectively arrange them onto the display spaces [6] [30] [36] [38] [42]; however,

these studies often had difficulty to visually compare large number of SPs.

PCPs are an alternative multivariate visualization technique that display

high-dimensional datasets as a set of polylines that intersect with parallel axes;

this visualization better enables the observation of correlations between pairs

of dimensions. Specifically, the existence of parallel polylines between two axes

indicates positive correlation. Conversely, polylines crossing between axes are

indicative of negative correlation. While PCPs have been well studied for high-

dimensional data visualization and are a valuable tool for the analysis of multi-

dimensional data, they have some shortcomings in practice. PCPs may require a

large horizontal display space even for a modest number of dimensions. Within

this horizontal display space the ordering of the dimensions is relevant for the

detection of pairwise correlations. Moreover, it is difficult to visually represent

the correlation of a particular dimension with three or more different dimen-

sions. An example of this situation can be illustrated given a dataset which

has four dimensions a, b, c, and d, which are visualized by a single PCP. The

correlations between a and b, or b and c, can be easily observed if the dimensions
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Figure 1: A snapshot of our proposed technique. The left side of the drawing area shows low-

dimensional PCPs, and the right side shows a dimension graph. Distances between arbitrary

pairs of dimensions are calculated as a preprocessing. Groups of close dimensions are extracted

and displayed as PCPs. The dimension graph displays how the groups of dimensions are

constructed.

are arranged in the order a, b, c, and d. However, the correlation between b and

d cannot be easily observed within this visualization.

Several techniques [3] [33] have attempted to address this last issue by only

displaying PCPs for subsets of the dimensions that are highly correlated. Given

the example dataset and situation specified above, these techniques would con-

struct two PCPs: one displaying a, b, and c, and the other displaying b and

d. This enables users to view correlations between b and all of the other di-

mensions. However, adjusting the optimal visualization parameters (subset of

dimensions to display) is a challenging issue that often requires interactive input

by an expert user. We hypothesize that new high-dimensional data visualization

capabilities can be enabled by combining multivariate visualization techniques

(e.g. PCPs) with an innovative coupling to interactive dimension selection tech-

niques [8] [34] [39] [41].

This paper presents a new technique for high-dimensional data visualization

in which a set of low-dimensional PCPs are interactively constructed. Figure
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1 shows a snapshot of our proposed technique, which features two visualiza-

tion components: low-dimensional PCPs and a dimension graph. The low-

dimensional PCPs display the values of the selected dimensions. We provide

two approaches to interactive dimension selection, derived from the correla-

tion between numeric dimensions or from data mined association rules between

numeric dimensions and categorical labels. The dimension graph displays the

relationships between the numeric dimensions and allows interactive dimension

selection. This representation is visually similar to correlation map proposed by

Zhang et al. [41]; however, our technique differs in the application of the dimen-

sion graph where we enabled simultaneous extraction of a set of low-dimensional

subspaces with a simple threshold adjustment operation, thus offering an inter-

active mechanism that is more intuitive, when compared with existing tech-

niques. We allow duplication in the selection of dimensions and the consequent

display across multiple low-dimensional PCPs. This enables visualization of re-

lationships between a particular dimension and three or more other dimensions,

which can be often difficult to understand when all dimensions are shown in a

single PCP. At the same time, our method flexibly saves display space because

many unnecessary dimensions can be removed from the visualization results.

The rest of this paper is organized as follows. We introduce related work in

Section 2. In Section 3, we present the framework that describes our new high-

dimensional visualization technique. We present an experimental validation of

our technique in Section 4 and draw conclusions from the outcomes in Section

5.

2. Related Work

In this section, we survey PCPs and interactive dimension selection tech-

niques. Our visualization technique builds upon a combination of these ap-

proaches.
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2.1. Parallel Coordinate Plots

As mentioned previously, PCPs [17] display high-dimensional datasets as

polylines intersecting with parallel axes. The improvement of PCPs is a very

active research topic and one of the well-known challenges in this domain is

that of polyline cluttering, i.e., a reduction of line crossings and overlaps for

visual comprehensibility. Several techniques have attempted to improve the

comprehensibility of the results obtained by PCPs by applying clustering or

sampling of the polylines [10] [18] [28] [43]. In addition, the effectiveness of

PCPs are highly dependent on the order of the dimensions and various dimension

ordering techniques have recently been proposed to address this issue [9] [16] [26]

[40]. The last major challenge is the difficulty in representing all correlations in

one display space, especially when a particular dimension is strongly correlated

with many other dimensions. In these circumstances, PCPs can represent only

a subset of all possible relationships between the dimensions.

2.2. Dimension Selection for High-Dimensional Data Visualization

When a multi-dimensional dataset contains a very large number of dimen-

sions, existing visualization techniques (e.g., PCPs or SPs) may need very large

display spaces to represent them completely. This problem can be solved by

dividing the high-dimensional data space into smaller subsets. Ten Caat et al.

applied multiple PCPs to represent time-varying multidimensional data [3]. Sue-

matsu et al. [33] also converted high-dimensional datasets into low-dimensional

subsets and visualized these subsets using multiple PCPs arranged on display

spaces based upon their similarity and correlation. Using similar ideas, Zheng

et al. [42] selected SPs based upon the meaningfulness of the dimensions being

displayed and adjusted their layout based upon their similarity. Claessen et

al. [5] presented a technique to visualize high-dimensional datasets by selecting

sets of low-dimensional subspaces and representing them as a combination of

PCPs and SPs. These techniques provide static results by the decomposition

of high-dimensional spaces into multiple pre-selected low-dimensional spaces.

However, the lack of any interactive mechanisms to select the sets of dimensions

6



denies domain experts the ability to use their prior experience and knowledge

to specify rules about the data.

Several studies have demonstrated that subsets or subspaces of high-dimensional

spaces can be effectively visualized by a user’s interactive selection of the sub-

space (subset of dimensions). Elmqvist et al. [8] presented an interactive mech-

anism to select pairs of dimensions and to smoothly switch between the SPs,

which was effective in preserving users’ mental maps of the high-dimensional

spaces. Lee et al. [22] and Liu et al. [23] applied dimension reduction schemes

to interactively select subsets of the high-dimensional data. Nohno et al. [24]

presented a technique to interactively contract highly-correlated dimensions to

adjust the number of axes displayed in PCPs.

Several recent studies have applied SPs for the representation of dimension

spaces in which each dot in the SP represents a single dimension in the space.

Turkay et al. [34] [35] presented a dual SP model to visualize both the items

and dimensions spaces. Similarly, Yuan et al. [39] presented a interactive mech-

anism to select low-dimensional subspaces on the SP display in which each dot

corresponds to a different dimension. We also represent the relationships among

the dimensions in a 2D space; however, our technique applies a graph rather

than a SP.

The technique recently proposed by Zhang et al. [41] uses a similar repre-

sentation to that applied by our technique. They construct a “correlation map”

in which the dataset dimensions are represented by dots where the connection

between the dots is derived from pairwise correlations. Our technique includes

two characteristics that differ fundamentally from the method of Zhang et al.

[41]. Firstly, the dimension graph in our technique is used as an interactive

mechanism to simultaneously control the dimensionality of the set of PCPs,

thereby allowing the PCPs to act as a visual representation of a set of low-

dimensional subspaces; in contrast, users need to find interesting dimensions

and select them individually while using the method of Zhang et al. In ad-

dition, our technique uses association rule mining to extract low-dimensional

subspaces in contrast with the correlation-based technique used by Zhang et al.
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[41]. Our technique can therefore extract complex multi-variate relationships in

comparison to pairwise correlations.

3. Proposed Visualization Technique

This section describes our new high-dimensional data visualization tech-

nique.

3.1. Processing flow

vij

Numeric values Categorical values

(1) High-dimensional input data
(2) Numeric values

(3) Dynamic dimension selection

via SPs or association rules

(4) Set of low-dimensional PCPs

cij

Figure 2: Processing flow of our technique. (1) High-dimensional input data. (2) Each

dimension of numeric values is treated as a vector, and distances between arbitrary pairs of

the set of vectors are calculated. (3) Sets of dimensions are semi-automatically selected. (4)

The sets of dimensions are displayed as low-dimensional parallel coordinates.

Figure 2 illustrates the processing flow of our technique. Our technique

treats the values of numeric dimensions as vectors, and calculates the distances

between arbitrary pairs of dimensions. It selects the sets of dimensions with an

interactive threshold setting. Our current implementation provides two types of
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dimension selection schemes. The first approach is based on distances between

arbitrary pairs of dimensions, as described in Section 3.2.1. This approach forms

a graph by connecting the pairs of dimensions if their distances are smaller than

the threshold, and finds cliques of the graph as sets of dimensions. The second

approach is based on concentration or separateness of the labels, as described

in Section 3.2.2. The approach treats the value of a user-specified categorical

dimension as labels, and extracts sets of dimensions if particular labels purely

concentrate on the particular portions of the axes of PCPs. The technique allows

the user to modify the threshold via a slider widget on the window system, and

selects the sets of dimensions and updates the sets of PCPs accordingly.

We formalize the high-dimensional datasets visualized by our technique as

follows. The dataset has m items, which contain n-dimensional values, including

nv numeric dimensions and nc categorical dimensions. The dataset D and the

i-th item ai are described as:

D = {a1, ..., am}
ai = {vi1, ..., vinv , ci1, ..., cinc}

where vij denotes the j-th numeric dimension value of the i-th item, and cik

denotes the k-th categorical dimension value of the i-th item. The value of cik

should be one of the categorical values {Ck1, ..., Cknk
}, where nk denotes the

number of possible categorical values for the k-th categorical dimension.

3.2. Dimension Set Selection

Dimension set selection is a key component for our visualization technique.

The requirements for the dimension set selection are strongly motivated by

what individual users want to see and how they wish to explore the data. In

this paper, we describe two approaches for interactive dimension set selection.

3.2.1. Distances among dimensions

It is important to understand correlation or relationships among variables in

many high-dimensional data analysis applications. Thus we provide a scheme
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to select sets of dimensions in which similar or highly correlated dimensions

are grouped into the same set. This process generates a dimension graph by

connecting highly correlated dimensions, and extracts cliques of the dimension

graph as sets of highly correlated dimensions. The dimension graph is visualized

by applying a dimensionality reduction scheme.

We treat each numeric dimension as a vector, described as {vj1, vj2, ...vjn}
for the j-th dimension, where n is the number of items. We first calculate the

distances between all possible pairs of the numeric dimensions. The distance

between the j-th and k-th numeric dimensions is defined as:

djk = |1.0− fc(j, k)| (1)

where fc(j, k) denotes Spearman’s rank correlation coefficients. This definition

means that positively or negatively correlated numeric dimensions have similar

distances and are thus close.

We then form a graph by connecting pairs of numeric dimensions if their

distances djk are smaller than user-defined threshold dselect. Consequently,

more connections are generated if the user set larger thresholds. Next, we

extract the set of cliques, or complete subgraphs, by performing a maximum

clique detection. Our implementation applies the Bron-Kerbosch algorithm [2].

The sets of dimensions corresponding to the cliques are displayed as PCPs.

Figure 3 shows a basic example of dimension set selection result. The right

side of the window displays the dots corresponding to the numeric dimensions

and their connections. We calculate the positions of the dots based on the

distances djk by applying MDS (multi-dimensional scaling) 1. The left side of

the window displays the PCPs generated from the dimensions contained in the

cliques of the graph. Our implementation allows two PCPs to be merged if their

corresponding cliques share only a single dimension, e.g., PCPs (b)’ and (c)’ in

1We apply the classical MDS implemented in MDSJ: Java Library for Multidimensional

Scaling (Version 0.2). Available at http://www.inf.uni-konstanz.de/algo/software/mdsj/.

University of Konstanz, 2009
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(c)

(a)

(b)

(a)’

(c)’(b)’

Figure 3: Dimension set selection according to distances among dimensions. (Left) A set

of PCPs displayed from the selected sets of dimensions. (Right) Three cliques of the graph

constructed by connecting pairs of dimensions if their distances are sufficiently small. The

cliques (a) to (c) correspond to (a)’ to (c)’ in the PCPs.

this figure.

We reorder the numeric dimensions so that well correlated pairs of dimen-

sions are adjacently placed in the PCPs. We attempt to minimize the sum of

djk between dimensions adjacently drawn in the PCPs, applying an approximate

solution of the traveling salesman problem [40].

3.2.2. Concentration and separateness of labels

Categorical dimensions in datasets can be used as labels that indicate partic-

ular characteristics of data elements. The correlations or relationships between

these labels and the numeric values in other dimensions quantify important in-

formation in many high-dimensional data analysis and exploration applications.

We therefore also also provide a scheme to select sets of dimensions where par-

ticular labels are either concentrated or distinctly separated. This scheme firstly

applies an association rule mining method to extract well related combinations

of labels and ranges of numeric dimensions, and visualizes them as a set of
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PCPs.

Note that the distance-based dimension selection (Section 3.2.1) was a gen-

eral approach to select dimensions and therefore required the calculation of the

correlation between all pairs of features. In contrast, the presence of labels

through categorical dimensions allows the opportunity to reduce the dimen-

sional space to only those dimensions that have strong relationships with the

labels.

To extract association rules between labels and ranges of numeric dimen-

sions, we first divide each range of numeric dimensions into a same number of

subranges. Let the range of one subrange of the j-th numeric dimension divj ,

and the minimum and maximum values be given by vjmin and vjmax. Here, the

k-th subrange of the j-th numeric dimension is described as follows:

Vjk = [
kdivj

vjmax − vjmin
,

(k + 1)divj
vjmax − vjmin

] (2)

We count the number of items where the value of the j-th numeric dimension

is in the k-th subrange. We then apply a quantitative association rule mining

algorithm [11] [32] 2 to discover the rules given by:

L → Vjk (3)

or

Vjk → L (4)

where L is a particular label corresponding to a particular value of a categorical

dimension of the input dataset. The first rule (Equation 3) denotes the case

where the ranges of particular numeric dimensions are predicted from labels of

items. In other words, this rule describes the subspaces where specific labels are

concentrated. The second rule (Equation 4) denotes the case where labels of

items are predicted based upon values of particular numeric dimensions. In other

words, this rule describes the subspaces that separate labels. We extract the

2We used our own implementation of association rule mining instead of any publicly avail-

able libraries.
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sets of dimensions that correspond to these discovered rules and visualize them

as sets of low-dimensional PCPs. Users can interactively adjust the thresholds

of support (tsup) and confidence (tcon), which are commonly used as criteria of

association rule mining.

Figure 4 illustrates this process applying Equation 4. It shows an example

of PCPs of numeric dimensions where different poly lines (indicated by color)

are well-separated. We define the order of dimensions by using an approximate

solution for the traveling salesman as described in Section 3.2.1.

j-th numeric

dimension 

k-th rank 

Cyan polylines are well separated.

Red polylines are well separated.

a-th label

b-th label

Select the j-th dimension

if particular labels occupy

large portions in the rank.

Figure 4: Dimension set selection according to separateness of labels. (Left) Numeric dimen-

sions are divided into multiple subranges. Items drawn as polylines are colored according to

values of the user-specified categorical dimension. For each color, the number of polylines

intersecting a particular subrange are counted. (Right) An example of PCPs comprising of

numeric dimensions where particular colors of polylines are well-separated.

3.3. Dimension Sampling

It is often important to render appropriate number of nodes in a limited

display space to comprehensively represent graphs. Meanwhile, many multi-
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dimensional datasets consist of groups of very similar dimensions where it is

not necessary to observe every dimension. Our technique supports a dimension

sampling scheme to render dimensions invisible when they are sufficiently close

to one or more visible dimensions. For this process, we again use Equation 1

to calculate the distance between dimensions. We extract pairs of dimensions

where these distances are smaller than a user-defined threshold dremove, where

dremove < dselect, and randomly select one of these dimensions to make it invis-

ible. The visible dimensions are then visualized by PCPs. Figure 5 illustrates

how dimensions are made invisible.

Retain one of the very close dimensions to be

visible, while setting other dimensions invisible.

Visualize sets of visible

dimensions using PCPs

Figure 5: Illustration of dimension set selection and sampling. Our technique retains only one

of the very close dimensions to be visualized by PCPs.

3.4. Interaction

Figure 6 shows a snapshot of our visualization technique. The upper-left

side of the window features the radio buttons to select one of the categorical

dimensions. After selection, the lower-left side of the window displays a list

of categorical values and their associated colors, to assist users to recognize

the numerical distributions with the categorical values. In this snapshot, the

selected categorical dimension contains two values, “False” associated to red,

and “True” associated to cyan.

The right side of the drawing area displays the dimension graph. Each vertex

(dot) corresponds to a numeric dimension. Edges (connections) between pairs
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Figure 6: Snapshot of out implementation with user interface widgets. The left side of the

window features the radio buttons to select a categorical dimensions. The center of the window

draws PCPs. The right side of the window represents distances among dimensions.

of numeric dimensions are formed if their distances are smaller than the user-

specified threshold dselect. The threshold can be smoothly controlled by users

through slider widgets featured at the side of the window. The slider widgets

are also used to control the support and confidence thresholds while applying

the association rule mining. Users may also draw rectangles (using mice or other

pointing devices) to specify the dimensions that should be forcibly included or

excluded from the selected sets of dimensions.

The left side of the drawing area displays the sets of PCPs. The PCPs

are updated when users select different categorical values using the radio but-

tons, adjust the thresholds dselect or dremove with the slider widgets, or draw

rectangles within the drawing area.

3.5. Rendering by PCPs

The visualization of the low-dimensional subspace occurs after the interactive

selection of numeric dimensions described in Section 3.4. While we use PCPs

for our visualization, other techniques can also be applied, e.g., SPs can be used

instead of PCPs by limiting the number of dimensions in each of the selected
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subsets. In our visualization, the axes of the PCPs are ordered as described in

Section 3.2.1. Polylines are then drawn; the transparency of the polylines in our

current implementation can be controlled with a slider widget.

Polyline coloring is powerful visual tool for assisting users to distinguish

polylines in PCPs. In our implementation, the colors are defined according to

the values of the user-selected categorical dimension. However, there are many

datasets without any categorical dimensions thus precluding color assignment

based on categories. In these cases, we therefore divide the items into sev-

eral groups using k-means clustering [15] and assign the colors accordingly; the

number of clusters can be specified by the user.

4. Experiments

We performed two case studies with our visualization technique: optimiza-

tion of airplane wing shape design, and knowledge mining between features and

annotations of medical images. Each case study used a different form of di-

mension set selection: distances among dimensions for the airplane wing shape

case study and the concentration and separateness of labels (association rules)

for the medical imaging case study. Both of these problem domains have high-

dimensional attributes and hence it is difficult to apply existing low-dimensional

approaches such as those mentioned in Section 2. We implemented our tech-

nique using Java Development Kit (JDK) 1.7.0, and executed it on a Lenovo

ThinkPad T450 (2.60MHz Dual Core, RAM 8GB) with Windows 7 (64 bit).

4.1. Case Study 1: Optimization for Airplane Wing Shape Design

Our first case study examined our visualization technique in its application to

analyzing the variables used for the optimization of airplane wing shape design

[25] [29]. The dataset consists of 72 design variables of whole wing shapes and

4 objective functions obtained from fluid dynamics simulations. The dataset

contains 776 Pareto optimal solutions obtained by a multi-objective genetic

algorithm. These solutions satisfy Pareto efficiency, a state of allocation of
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resources in which it is impossible to make any one item better off without

making at least one item worse off. We visualized this dataset as 776 items of a

76 dimensional dataset. Note that this dataset does not contain any categorical

dimensions; we used the clustering technique described in Section 3.5 to assign

four colors to the polylines of the PCPs.

One of the motivations for visualizing this dataset is to observe and under-

stand the trade-offs among the objective functions; such trade-offs can be found

in many multi-objective optimization problems. We believe that visualization

can contribute to the careful analysis of the distribution of the objective func-

tions thereby enabling a better subjective selection of Pareto solutions and the

design of better optimization processes. Another motivation is to discover un-

known relationships among all the variables, not limited to a subset (dv00 to

dv05 as described below). Such discoveries will be useful in narrowing down the

variables to be optimized during the design of better wing shapes.

The design variables in the dataset are given by the range from dv00 to dv71.

It is well-known in aerospace design community that the following six variables

were most important for the optimum solution discovery:

• dv00, dv01: Span lengths of the inboard/outboard wing panels.

• dv02, dv03: Leading-edge sweep angles.

• dv04, dv05: Root-side chord lengths.

Other design variables included the following:

• dv06 to dv25: Variables to define the inner surface connecting correspond-

ing points on upper and lower surfaces of the wing, to design the warping

of the wing.

• dv26 to dv32: Variables to design the twist of the wing.

• dv33 to dv71: Variables to design the thickness of the wing.

The objective functions are as follows:

17



• CDt: Drag coefficient during transonic cruise.

• CDs: Drag coefficient during supersonic cruise.

• Mb: Bending moment at the wing root during supersonic cruise.

• Mp: Pitching moment during supersonic cruise.

We first observed the positions of dots in the right side of the window as

shown in Figure 7. We found that six dots, corresponding to the four design

variables dv00, dv01, dv04, and dv05, and the objective functions CDt and Mb,

were closely placed in the right end as shown in Figure 7(a). We also found that

four dots, corresponding to the design variables dv02 and dv03, and the objective

functions CDs and Mp, were similarly concentrated as shown in Figure 7(b).

We then interactively adjusted the threshold dselect and observed the PCPs

to determine the correlations among the dimensions. As a result, we discov-

ered correlations between pairs of the variables, including negative correlation

between CDt and Mb as in Figure 7(a)’. This negative correlation denotes a

typical trade-off between the two objective functions. Meanwhile, dv00 and dv01

had negative correlations with dv04, while dv04 had a positive correlation with

dv05. Figure 7(b)’ shows that another pair of objective functions CDa and Mp

has a trade-off. It also shows that the positive correlation between dv02 and

dv03 brings Pareto solutions.

Figure 7 also demonstrates that our technique effectively visualizes the sub-

set of dimensions that are strongly correlated. However, the correlation visual-

ized in this figure was already a well-known property of airplane wing design.

It is perhaps a more interesting and important problem to use our visualization

technique to uncover unknown relationships among the variables. We therefore

visualized more relationships by interactively adjusting the threshold parame-

ter dselect; the resulting visualization is shown in Figure 8. We found negative

correlations between Mb and dv28, dv41, and dv62, dv04 and dv10, and dv10 and

dv57. Here, dv10 is one of the design variables to define the shape of curved

surface connecting corresponding positions on upper and lower surfaces of the
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(b)

(a)

(a)’ CDt, Mb, dv01, dv04, dv05

(a)’ CDt, Mb, dv00, dv04, dv05

(b)’ CDs, Mp, dv02, dv03

Figure 7: Pareto solutions of multi-objective optimization for airplane wing design (1). The

six design variables dv00 to dv05 were known to be dominant for the design optimization,

and these variables are strongly correlated with the four objective functions. A clique (a) is

represented by PCPs (a)’, while another clique (b) is represented as another PCP (b)’.

wing, which controls the crook of the wing; dv28 is one of the variables to design

the twist of the wing; and, dv41 and dv62 control the thickness of the wing. The

dataset owner, an expert in aerospace fluid simulations, communicated that he

did not know this result and it might bring new knowledge in the field of airplane

design.

Several related visualization techniques [34] [39] apply dimension-reduced

scatterplots for representation of low-dimensional subspaces. This representa-

tion is suitable to find similar simulation results; on the other hand, our tech-

nique is more convenient for carefully observing how dimensions correlate to

each other. The correlation map [41] is also useful for observing the relationships

among the dimension; however, users need to find interesting dimensions and

select them individually on the correlation map. Our technique demonstrated

its ability to simultaneously extract all sets of well-correlated low-dimensional

subspaces with a simple threshold adjustment operation.
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dv41, dv62Mb, dv28

dv04, dv10, dv57

dv10

dv57

dv28

dv62
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Figure 8: Pareto solutions of multi-objective optimization for airplane wing design (2). We

identified many unknown relationships among design variables and objective functions by

interactively adjusting the threshold parameter dselect.

Figure 9 shows an example of visualization of Pareto solutions using common

PCP. It is hard to recognize relationships between adjacent dimensions unless

we have very horizontally wide display spaces. Dimension selection is useful to

compactly visualize sets of well-correlated dimensions. Also, it is hard to analyze

relationship between a particular dimension and each of more than two other

dimensions using regular PCPs, because they are useful mainly while observing

relations between adjacent dimensions. It is more useful to observe complex

relationships between such dimensions using our technique, which allows to

duplicate a single dimension to appear in multiple PCPs.

4.2. Case Study 2: Features and Annotations of Medical Images

Medical data informatics is an increasingly important research area in health-

care [20]. A key challenge in this area is the analysis and interpretation of multi-

dimensional data for retrieval and classification applications. Most existing ap-

proaches rely on automatic “black-box” approaches that use machine-learning

to select the most discriminative features, with limited opportunity for input
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Figure 9: Visualization of Pareto solutions using common PCP.

or verification by domain experts, e.g., artificial neural networks to predict the

characteristics of lung nodules [19], decision tree committees for medical case

retrieval [27], etc. However, it has been shown that black-box learning can train

models that do not have meaningful reasons for their predictions. For example,

computer-selected chemicals did not perform as predicted in real-world physi-

cal experiments [12]. Transparency is therefore an important aspect, especially

for medical informatics, as it engenders trust in the system by allowing human

experts the opportunity to verify and validate the choices that have been auto-

matically made [31]. Visualization introduces an element of transparency to the

feature selection process and provides deeper insights into the correlations and

associations between different dimensions. Visualizations can improve verifia-

bility by showing that the combinations of inter-related dimensions correspond

to a particular clinical outcome. Furthermore, visualizations also offer the op-

portunity for an exploration of the dataset that be used to identify outliers and

new unknown patterns [21].

Clinical experts usually interpret volumetric (3D) medical images through

multi-planar views that show the images from the three standard orientations
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or planes; each plane shows similar or related information from different points

of view [4]. In the literature, many medical image informatics systems use

features extracted from the axial (x -y) viewing plane only [19]. In this case

study, we will visualize the image features extracted from a large dataset of

volumetric medical images to validate whether axial features are sufficient to

predict diagnostic outcomes.

We obtained 933 computed tomography (CT) images of lung cancer patients

from the Lung Image Database Consortium and Image Database Resource Ini-

tiative (LIDC/IDRI) [1]3. The dataset also included four annotations assigned

by clinical experts; two annotations described the diagnostic outcomes of the

images and the other two indicated the method used to determine the diagnosis.

Our visualizations plotted the image features (dimensions) that were related to

the following annotations:

• Nodule-Level Diagnosis : Diagnosis assigned to the first lung growth or

lesion. (0 = unknown, 1 = benign or non-malignant disease, 2 = malignant

primary lung cancer, 3 = malignant metastatic diseases.)

• Method for Nodule-Level Diagnosis : The clinical method used to deter-

mine the diagnosis for the first/primary nodule. (0 = unknown, 1 = review

of radiological images to show 2 years of stable nodule 2 = biopsy, 3 =

surgical resection, 4 = progression or response.)

We used automatic image processing techniques to calculate well-established

image features from the nodules in each image [19]. For each image, we extracted

the same set of 316 dimensional features from the three standard viewing planes

(axial: x -y plane, coronal: x -z plane, sagittal: y-z plane), resulting in 948

dimensions in total. Our method is capable of operating in the cases where the

number of dimensions are larger than the number of images.

While image features from the three standard planes enables consideration

of the complete information about the image it may also introduce redundant

3The LIDC/IDRI dataset source: http://cancerimagingarchive.net/
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information through highly correlated features extracted from different planes.

The features we extracted were categorized as follows:

• Nodule size and shape properties (e.g., area, convex hull, circularity, etc.).

• Pixel intensities inside the nodule (e.g., range, mean, standard deviation,

etc.).

• Texture of the nodule, described using grey-level co-occurrence (GLC)

features (e.g., entropy, contrast, etc.) and Gabor filter responses.

Figure 10 shows an initial visualization of the dataset. The high degree of

inter-relationships between the image features means that it is quite difficult to

understand numeric distribution of individual dimensions by a simple observa-

tion of the PCPs. This remains true even after we visualized a subset of the

364 features selected by the distance among dimensions sampling (Section 3.3).

We therefore visualized a separate set of PCPs for the subspace of image

features that were associated with each of the labels within the annotations.

We interactively determined the low-dimensional subspace as follows. We first

selected an annotation and data mined the rules that indicated which numeric

dimensions were responsible for separation or concentration of the labels within

the annotation (see Section 3.2.2). We then adjusted the thresholds tsup and

tcon to vary the strength of the concentration or separation until visually clear

PCPs were discovered.

The resultant visualizations are depicted in Figures 11 and 12. The axes of

these PCPs represented the most meaningful image features for each different

label. The IDs of individual image features are indicated in the figures, and

their names are shown in Tables 1 and 2. Figure 11 shows the most meaningful

features for the annotations of Nodule-Level Diagnosis, in which the polylines

for label “0” are drawn in red, “1” in green, “2” in cyan, and “3” in purple; the

names of these features are summarized in Table 1. Figure 12 shows the most

meaningful features for the annotations of Method for Nodule-Level Diagnosis,

in which polylines for label “0” are drawn in red, “1” in green, “2” in cyan,
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Figure 10: PCP and dimension graph of the multidimensional feature values derived from the

LIDC images. (Upper) Visualization of all the 948 image features. (Lower) Sampling of 364

features.

and “4” in purple; these features are summarized in Table 2. Note that no

discriminatory features were found for label “3” of Method for Nodule-Level

Diagnosis, indicating that perhaps new image features need to be developed to

account for diagnosis after ‘surgical resection’. Visually, adjacent axes connected

by densely placed parallel polylines indicate the features that are most important

to a particular label.

Both the visualization and Table 1 show that while axial features are useful,

the introduction of features from the other viewing planes could augment the

classification of lung abnormalities. In particular, the thick, parallel polylines

for the “coronal GLC texture cluster shade” feature in the plots for both primary
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(label 2) and metastatic (label 3) disease suggest that this feature is useful for

distinguishing between benign (labels 0 and 1) and malignant disease (labels 2

and 3). Other features have polylines that are only parallel in one plot and so

are useful for separating one label from the others, e.g., “coronal shape solidity”

and “sagittal shape roughness” are useful for separating primary disease (initial

site of cancer) indicated by label 2 from metastatic disease (cancer that has

spread) indicated by label 3.

Similarly, the visualization and Table 2 show that image features from all

planes are relevant to different diagnostic methods. Axial intensity and shape

axis length features are related to diagnosis by biopsy (label 2) and exhibit many

parallel polylines. Similarly, coronal GLC texture contrast, coronal intensity,

and sagittal entropy would be useful for emulating radiological review (label 1).

Our findings indicate that a combination of features from different viewing

planes offer better discriminatory power for distinguishing different labels and

annotations. This is in contrast to existing work on the same dataset that only

uses axial features [19]. Our visualization technique has thus identified new

image features that will be more meaningful to a human reader and this could

enable the creation of computer-aided diagnostic tools that emulate different

diagnostic processes. For example, it could facilitate the use of optimal multi-

planar image features (Table 1) in computer-aided diagnosis systems, thereby

allowing these applications to mimic the image interpretation of a clinical expert.

4.3. Computation Time

We measured computation time of technical components of our technique

as shown in Table 3. The terms “Dataset 1” and “Dataset 2” correspond to

the datasets used for Case Studies 1 and 2, respectively. “Dimension graph

setup” corresponds to computation time for dimension-to-dimension distance

calculation and node placement for dimension graph applying MDS. “Distance-

based selection” corresponds to computation time for distance-based dimension

selection and reordering described in Section 3.2.1. “Label-based selection”

corresponds to computation time for label-based dimension selection described
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Level 0

Level 1

Level 2

Level 3

Figure 11: Dimension set selection based on separateness of labels. Polylines are labeled and

colored according to the Nodule-Level Diagnosis annotation. The four PCPs correspond to

the four levels of the Nodule-Level Diagnosis.

in Section 3.2.2. We freely operated slider widgets 20 times, and derived average

and maximum computation times for distance-based and label-based selection.

Since Dataset 1 did not contain any labels, computation time of label-based

selection was measured only with Dataset 2.

The result shows that dimension graph setup may require large computation

time for the calculation of pairwise distances between large numbers of dimen-

sions. However, it is important to note that this process occurs only once for

each dataset. In our implementation, this is calculated as an offline pre-process

prior to visualization; the distances are saved to a data file for later reuse.

The result also shows that distance-based selection took more computation

time compared to label-based selection. Computation time may be exponential
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Level 0

Level 1 Level 4

Level 2

Figure 12: Dimension set selection based on separateness of labels. Polylines are labeled

and colored according to the Method of Nodule-Level Diagnosis annotation. The Method of

Nodule-Level Diagnosis has five levels, but this result shows four PCPs because no rules with

sufficiently high support could be mined for level 3.

to the number of dimensions in the largest clique for distance-based selection.

As such, the generation of large PCPs may require extensive computation time.

Meanwhile, the computation time for label-based selection is proportional to the

number of dimensions, items, and labels. The acceleration of these processes

will empower interactive operations with large datasets.

5. Discussion

Our technique allowed users to intuitively define and select multiple low-

dimensional spaces using an interactive dimension selection mechanisms. Both

our case studies discovered new patterns within the data that were not appar-

ent when visualizing the entire high-dimensional space. Thus our case studies
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showed how an effective visualization of a subspace of high-dimensional data

could be constructed by leveraging a user’s prior knowledge of the application

domain. We suggest that our visualization technique can be adapted and ex-

panded through the modification of its constituent components.

In our current approach, we use classical MDS to place the vertices (dots

corresponding to numeric dimensions) of the dimension graph (Section 3.2.1).

However, under MDS it is possible that there may be a distortion of the dis-

tances caused by the projection to a two-dimensional space. Thus in the view

of the dimension graph it is possible that vertices in close proximity may not

represent dimensions that are close. While MDS was sufficient for our chosen

applications, we suggest several other schemes that may be more suited to other

applications. Non-linear dimensionality reduction algorithms (e.g. Isomap) may

create better layouts but require more computation time. Graph layout tech-

niques such as force-directed [7] or stress minimization [13] layouts may also

improve the visualization of the dimension graph.

Similarly, alternate methods could also be used to define the order of dimen-

sions in the PCPs. In our approach we used an approximate solution for the

traveling salesman problem (Section 3.2.1). Other approaches could also poten-

tially be used to derive a meaningful ordering of the dimensions, especially when

the dataset contains categorical values. For example, for some applications it

would be meaningful to sort the axes according to the quality of the separation

of categorical values, i.e., the dimensions that give the best separation appear

first and those that give the least clear separation appear last. Sorting axes

according to the confidence and/or support values could also be an effective ap-

proach for some datasets. These approaches may assist users in understanding

the importance of the displayed dimensions.

Another alternative adaptation would be the integration of our two inter-

active dimension selection techniques to enable more focused lower-dimensional

PCP visualization. In this adaptation, the category-based rule mining would be

used to plot the numeric dimensions as a dimension graph, in which the edges

would be derived from the support and confidence of the association rules. Our
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clique-based dimension selection could then be applied to select sets of mined

dimensions.

As future work, we will investigate the use of different graph layout algo-

rithms and alternate dimension reordering approaches. Also, we aim to intro-

duce several additional functions to the current visualization including:

• Brushing and filtering operations on the PCPs to specify the region of

interest, and recalculation of dimension graph, as some related studies

[34] [39] implement brushing interaction for both items and dimensions.

• Applying various definitions of distances for dimension graph.

• Applying various layout algorithms to dimension graph, as discussed ear-

lier in Section 5.

• Applying various dimension reordering for PCPs, as discussed earlier in

Section 5.

• Improvement of rendering for PCPs, including cluttering avoidance, and

coloring of overlapped semitransparent polylines.

After implementing these functions, we will investigate application-specific opti-

mizations of our technique through user experiments that evaluate the effective-

ness of the technique in different domains with a variety of datasets. We would

also like to integrate our visualization into a data visualization tool for medical

imaging informatics [21] as a non “blackbox” method of feature selection; this

would enable clinical users to conduct an expanded analysis of the relationships

between CT image features and patient- or nodule-level diagnosis. All of these

experiments will be supported by detailed analysis of the visualization results

by domain experts.

6. Conclusions

We presented an interactive technique for the visualization of high-dimensional

data spaces. Our technique displays numeric values of the selected sets of di-

mensions by a set of PCPs, while the dimension graph component displays the
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relations between the numeric dimensions and provides interactive dimension

selection mechanisms. Our technique features two types of dimension selection

criteria: distances among dimensions, and separateness of labels. The former

is used to visualize highly correlated sets of dimensions while the latter is used

to visualize the sets of dimensions which sufficiently separate items with spe-

cific labels. We demonstrated the effectiveness of our technique using two case

studies. We discovered important knowledge about unknown relations among

design variables of airplane wing shape and objective functions, and about re-

lations between image feature values derived from CT images and nodule-level

diagnosis.
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Table 1: List of meaningful features that distinguish labels from “Nodule-Level Diagnosis”

discovered by interactively adjusting tsup and tcon.

Label ID image feature name (parameters)

0 a35 axial contrast (distance: 4, angle: 135)

a304 axial Gabor filter standard deviation (orientation: 0.0, scale: 0.3)

c9 coronal shape elongation

s33 sagittal GLC texture contrast (distance: 4, angle: 45)

s157 sagittal GLC texture cluster shade (distance: 3, angle: 45)

1 a13 axial shape extent

c18 coronal intensity standard deviation

c49 coronal GLC texture correlation (distance: 4, angle: 45)

2 a36 axial GLC texture correlation (distance: 1, angle: 0)

a159 axial GLC cluster shade (distance: 3, angle: 135)

c12 coronal shape solidity

c157 coronal GLC texture cluster shade (distance: 3, angle: 45)

c159 coronal GLC cluster shade (distance: 3, angle: 135)

c161 coronal GLC cluster shade (distance: 4, angle: 45)

s8 sagittal shape roughness

s154 sagittal GLC texture cluster shade (distance: 2, angle: 90)

3 a16 axial intensity maximum

a292 axial Gabor filter mean (orientation: 0.0, scale: 0.3)

a294 axial Gabor filter mean (orientation: 0.0, scale: 0.5)

a304 axial Gabor filter standard deviation (orientation: 0.0, scale: 0.3)

c161 coronal GLC texture cluster shade (distance: 4, angle: 45)

c292 coronal Gabor filter mean (orientation: 0.0, scale: 0.3)

s157 sagittal GLC texture cluster shade (distance: 3, angle: 45)

s292 sagittal Gabor filter mean (orientation: 0.0, scale: 0.3)
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Table 2: List of meaningful features that distinguish labels for “Method of Nodule-Level

Diagnosis” discovered by interactively adjusting tsup and tcon.

Label ID image feature name (parameters)

0 a202 axial GLC texture sum of entropy (distance: 2, angle: 90)

a204 axial GLC texture sum of entropy (distance: 3, angle: 0)

a304 axial Gabor filter standard deviation (orientation: 0.0, scale: 0.3)

c9 coronal shape elongation

c39 coronal GLC texture correlation (distance: 1, angle: 135)

s141 sagittal GLC texture cluster prominence (distance: 3, angle: 45)

1 a34 axial GLC texture contrast (distance: 4, angle: 90)

a145 axial GLC texture cluster prominence (distance: 4, angle: 45)

c26 coronal GLC texture contrast (distance: 2, angle: 90)

s98 sagittal GLC texture entropy (distance: 4, angle: 90)

2 a16 axial intensity maximum

c6 coronal minorAxisLength

c142 coronal custerProminence (distance: 3, angle: 90)

4 a292 axial Gabor filter mean (orientation: 0.0, scale: 0.3)

a294 axial Gabor filter mean (orientation: 0.0, scale: 0.5)

c15 coronal intensity minimum

c17 coronal intensity mean

c20 coronal GLC texture contrast (distance: 1, angle: 0)

c180 coronal GLC texture sum of variance (distance: 1, angle: 0)

s292 sagittal Gabor filter mean (orientation: 0.0, scale: 0.3)
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Table 3: Computation time (msec.)

Dataset 1 Dataset 2

Number of dimensions 76 948

Number of data items 776 933

Dimension graph setup 8101 1498219

Distance-based selection (ave.) 109 3788

Distance-based selection (max.) 603 32338

Label-based selection (ave.) - 1399

Label-based selection (max.) - 5220
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