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Abstract Multi-dimensional data visualization is an important research topic
that has been receiving increasing attention. Several techniques that apply scat-
terplot matrices have been proposed to represent multi-dimensional data as a
collection of two-dimensional data visualization spaces. Typically, when using the
scatterplot-based approach it is easier to understand relations between particu-
lar pairs of dimensions, but it often requires too large display spaces to display all
possible scatterplots. This paper presents a technique to display meaningful sets of
scatterplots generated from high-dimensional datasets. Our technique first evalu-
ates all possible scatterplots generated from high-dimensional datasets, and selects
meaningful sets. It then calculates the similarity between arbitrary pairs of the se-
lected scatterplots, and places relevant scatterplots closer together in the display
space while they never overlap each other. This design policy makes users easier to
visually compare relevant sets of scatterplots. This paper presents algorithms to
place the scatterplots by the combination of ideal position calculation and rectan-
gle packing algorithms, and two examples demonstrating the effectiveness of the
presented technique.

Keywords Visualization · Scatterplot · Isomap · Force-directed graph layout ·
Rectangle packing

1 Introduction

Multi-dimensional data visualization is an important and active research field.
According to survey papers in the field, several techniques have been proposed
[Wong 97,Grinstein 01]. The authors of [Wong 97] divided the available multi-
dimensional data visualization techniques into three categories: two-variate dis-
plays, multivariate displays, and animation.
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The typical two-variate display technique is the scatterplot, which assigns two
of the dimensions onto the X- and Y-axis of the two-dimensional display space.
Because historically scatterplots have been widely used and are currently imple-
mented in commercial spreadsheet software packages, they are particularly popular
and users are familiar with them. The scatterplot matrix, which consists of mul-
tiple adjacent scatterplots, has also been widely used to represent the dimensions
of high-dimensional datasets. Each scatterplot is identified by its row and column
index. Even though ordinary users are familiar with scatterplot matrix, they have
two major drawbacks. First, if the number of dimensions in a given dataset is very
large, the individual scatterplots in a display space may be very small. Second,
it is difficult to visually compare arbitrary pairs of scatterplots that are distantly
placed in the display space.

Multivariate display techniques attempt to represent the distribution of all the
dimensions in a given dataset on a single display space. Several multivariate display
techniques are available, including icon- and glyph-based techniques, such as hier-
archical axis [Mihalisin 90], worlds within worlds [Feiner 90], parallel coordinates
[Inselberg 90], VisDB system [Keim 94], and XmdvTool [Ward 94]. Recently, the
parallel coordinates technique has been the subject of many studies and is widely
used. However, this technique has several drawbacks. First, when the number of
dimensions is very large it may require a large horizontal display space. Second,
it is difficult to represent the correlation of a particular dimension with three or
more dimensions.

In this paper, we present a technique to represent high-dimensional spaces
using multiple scatterplots. Our proposed technique overcomes the drawbacks of
both the two-variate and multi-variate data visualization techniques. The proposed
technique selectively displays meaningful sets of scatterplots. Our technique first
selects a pre-defined number of scatterplots based on a particular conditions. Here,
we think one of the meaningfulness of the scatterplots can be determined based on
separateness of particular classes, and therefore the separateness is applied as the
condition in this paper. Then, it defines the distances or connectivity between all
the pairs of scatterplots. Next, it computes the ideal positions of the scatterplots
based on their distance or connectivity values. Finally, it applies a rectangle pack-
ing algorithm and places the scatterplots [Itoh 06] [Itoh 09] based on their ideal
positions. By the combination of ideal position calculation and rectangle packing
algorithms, our technique places similarly looking scatterplots closer together in
the display spaces, while they never overlap each other.

This paper presents visualization results two example datasets demonstrating
the effectiveness of the presented technique.

2 Related Work

2.1 Scaterplot

As discussed in Section 1, many scatterplot-based techniques use dimension re-
duction or the scatterplot matrix. Dimension reduction is useful in representing
in a single display space, the overall distribution of vectors in multidimensional
spaces. The effectiveness of dimension reduction depends strongly on the projec-
tion scheme selected. Leban et al. [Leban 05] introduced VisRank, which supports
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users in obtaining meaningful projections. Scaterplot matrix is often preferable
because it directly assigns dimensions to the axes of scatterplots. However, these
techniques have the drawback that the size of the scatterplots displayed may be
very small.

To address the problem, Wilkinson et al. [Wilkinson 05] and Sips et al. [Sips 09]
presented techniques emphasizing on displaying meaningful scatterplots. How-
ever, because these techniques are still based on matrix-based layouts of scat-
terplots, it is often difficult to effectively represent correlations among scatter-
plots. Developing interactive mechanism is another approach for exploration of
high-dimensional spaces. Recently, various interactive techniques, such as rolling
the dice [Elmqvist 08], have been introduced to assist users in exploring high-
dimensional spaces.

2.2 Rectangle Packing

Our proposed technique applies a rectangle packing algorithm to visualize hierar-
chical data [Itoh 06]. The rectangle packing algorithm represents a hierarchy as
nested rectangles and leaf-nodes as painted icons. Moreover, it mostly satisfies the
following conditions:

Condition 1: It never overlap the leaf-nodes and branch-nodes in a single hierarchy
of other nodes.

Condition 2: It minimizes the display area.
Condition 3: It minimizes the aspect ratio and area of the rectangular subspaces.
Condition 4: It minimizes the distances between the actual and ideal positions of

the rectangular subspaces (when the ideal positions of the rectangular sub-
spaces are provided).

First, the rectangle-packing algorithm specifies the order of the placement of rect-
angles. Then, it identifies several candidate positions that satisfy condition 1, for
placing a rectangle. Next, for each candidate position, it computes penalty val-
ues, which represent to what extent each position satisfies conditions 2, 3, and 4,
respectively. Finally, it places the rectangle at the best candidate position.

This rectangle packing algorithm has also been applied to a graph visualization
technique [Itoh 09]. The technique first applies hierarchical clustering to a given
graph, and generates clusters of nodes based on both their assigned categories and
connectivity. Then, it visualizes the hierarchy by applying a hybrid force-directed
and space-filling layout. The force-directed layout minimizes distances between
connected or similarly categorized nodes. Conversely, the space-filling layout ap-
plies the rectangle-packing algorithm to minimize the cluttering of nodes and max-
imize the utility of the display. Hence, the hybrid layout for graph visualization
realizes simultaneously both features.

3 Scatterplot Packing for High-Dimensional Data Visualization

This section firstly defines the input datasets and outputs, and briefly describes
the processing flow of the scatterplot packing. It then presents in detail how we
implement high-dimensional data visualization by packing a set of scatterplots.
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Our implementation firstly selects a set of meaningful scatterplots. Next, it com-
putes their ideal positions based on their similarity values. Finally, it applies the
rectangle packing algorithm to adjust the positions of the meaningful scatterplots.

3.1 Data structure

In this paper, an n-dimensional input dataset Ds is defined as follows:

Ds = {x1, ..., xN}, (1)

where xi is the i-th vector, and N is the number of vectors. Our technique first
forms pairs of the n dimensions:

Gp = {g1, ..., gG}, gi = {di1, di2}, (2)

where gi is the i-th pair of the dimensions, G = n(n− 1)/2 is the number of pairs,
and dij is the j-th dimension of gi.

3.2 Processing flow

Our proposed technique first constructs a set of two-dimensional datasets from the
high-dimensional input dataset. Let Si = {xdi

1 , ..., xdi

N} be a set of scalar values,

where xdi

j is the value of the di-th dimension of the j-th vector. Our technique
compares arbitrary pairs of values Si and Sj , and if they are similar or correlative,
categorizes the i-th and j-th dimensions into the same group. Next, it computes
the similarities or distances between arbitrary pairs of values of the datasets Dpi
and Dpj . Here, the dataset Dpi = {x′

1, ..., x
′
N} is a dataset consisting of two-

dimensional vectors constructed by extracting an arbitrary pair of dimensions gi
from Ds. Finally, it calculates the positions of the two-dimensional datasets and
places similar ones closer together in the display space.

Our technique first calculates the ideal positions of the scatterplots, and then
applies the rectangle packing algorithm to adjust their positions. This two-step
technique satisfies the following requirements: (1) it places similar scatterplots
closer together in the display space, and (2) it avoids overlaps, thus reducing
wasted space in the display regions.

Our current implementation of computing ideal positions supports the follow-
ing two methods:

– Dimension reduction based on the similarity distances between scatterplots.
– Graph layout, where scatterplots are connected based on their similarity mea-

sures.

3.3 Selection of Scatterplots

As mentioned above, our approach first selects a set of meaningful scatterplots. We
assume that one of the classes, {Y1, ..., YC}, is assigned exclusively to the vectors
of a multidimensional dataset. Here, C is the number of classes, and Yj is the j-th
constant value which denotes a particular class. Our current implementation selects
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a set of scatterplots which have the particular features that vectors of particular
classes are well-separated from other vectors. This section proposes formula for
determining class separation and an algorithm to select the scatterplots.

First, we compute the entropy Hall for all pairs of dimensions

Hall(gk) = −1/N

N∑

n=1

C∑

c=1

p(yn = c|xgk
n ) log p(yn = c|xgk

n ) (3)

where xi is the i-th vector, yi is the class assigned to the i-th vector, and p(yn =
c|xgk

n ) is the probability that the c-th class Yc is assigned to the n-th vector xn.
Moreover, x

gj

i is a two-dimensional vector containing the k-th pair of the di-
mensions of xi. This value represents the separation of classes in a scatterplot
generated by the k-th pair of the dimensions. Furthermore, we compute the en-
tropy Hc with the c-th class, for all classes (1 ≤ c ≤ C).

Hc(gk) = −1/N

N∑

n=1

p(yn = c|xgk
n ) log p(yn = c|xgk

n )

+p(yn �= c|xgk
n ) log p(yn �= c|xgk

n ) (4)

This value represents the separation of the c-th class from other classes in a scat-
terplot generated by the k-th pair of the dimensions.

Our implementation first computes Hall and Hc for all pairs of dimensions as
shown in Figure 1(1). Next, it selects a predefined number of pairs of dimensions
which have the smaller Hall and/or Hc values. Values Hall and Hc are also used
in Section 3.4 to place similarly looking scatterplots closer together in the display
space.

(1) Entropy calculation

d1

dn

d1 dn

Calculate (Hall, H1, …, HC) 
for all pairs of dimensions

(2) Distance matrix of scatterpots

S1

S1

Calculate distances between pairs

of the vectors (Hall, H1, …, HC) 

Dimension pairs

selection

(3) Ideal position calculation

S1
S2

S3
S4

(4) Scatterplot packing

S1
S2

S4S3

By dimension reduction or

force-directed graph layout

Fig. 1 Illustration of selecting and placing scatterplots.

Though this section introduces a scatterplot selection algorithm based on class
separation, there are other meaningful metrics. For example, centrality [Correa 12]
may be a good criterion for scatterplot selection.
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3.4 Placement of Selected Scatterplots

In this subsection, we describe how the selected set of scatterplots is placed onto the
display space. Our technique first computes the ideal positions of the scatterplots
on the display space based on their similarity, and then adjusts their positions by
a rectangle packing algorithm. We prepare two algorithms for the ideal position
computation which are alternatively applied.

3.4.1 Dimension reduction for computing ideal positions

The entropy values Hall, H1, ...,HC are arranged in a C + 1 dimensional vector,
termed the “entropy vector” of the section. Here, the section denotes the number
of scatterplots M , the number of dimensions of the entropy vectors dim = C + 1,
and the entropy vector of the j-th scatterplot Sj . Next, we calculate the similarity
distances between the a-th and b-th scatterplots, and generate an M ×M matrix
containing the distances of all possible pairs of scatterplots, as shown in Figure
1(2). Then, we apply to the matrix the Isomap scheme and compute the two-
dimensional positions of the scatterplots.

3.4.2 Graph layout for computing ideal positions

Instead of generating a distance matrix, we generate a graph structure by con-
necting pairs of scatterplots that are sufficiently similar. Next, we apply a force-
directed graph layout technique and compute the two-dimensional positions of the
scatterplots. Our implementation simply sets the stable lengths of edges as the
above mentioned similarity distance values before applying the force-directed lay-
out, while it does not consider the sizes of nodes. This process can be improved
by applying more sophisticated techniques [Harel 02] [Lin 09].

3.4.3 Rectangle packing

After calculating the ideal positions of the scatterplots by selectively applying di-
mension reduction or graph layout techniques, as shown in Figure 1(3), we compute
the final positions of the scatterplots by applying a rectangle packing algorithm,
as shown in Figure 1(4).

4 Example

In this section, we present examples of visualizing datasets using our technique
described above. We implemented in Python 2.7 the scatterplot selection (Section
3.3), and dimension reduction (Sections 3.4.1) algorithms. Moreover, we imple-
mented the force-directed layout (Sections 3.4.2) and rectangle packing (Sections
3.4.3) algorithms using the Java Development Kit (JDK) 1.6.0. We executed the
implementation on Lenovo ThinkPad T420s (Intel Core CPU 2.70GHz and 8GB
RAM) with 64 bit version of Windows 7 Service Pack 1.

In our experiments, we observed large differences in the quality and computa-
tion time between approaches using dimension reduction and force-directed graph
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layout. Dimension reduction required approximately ten minutes of computation
time, while force-directed graph layout required only several seconds. Conversely,
the visualization quality using dimension reduction was subjectively much better.

In the next subsection, we present visualization results obtained using dimen-
sion reduction.

4.1 Example 1: Image segmentation data

In this subsection, we present the visualization results obtained by applying our
technique to the “Segmentation” dataset published at the UCI machine learning
repository [Data-seg]. This dataset contains 18 feature values of 210 blocks of
images. Here, the blocks are generated by dividing each of 7 images into 30 blocks.
We treated images as classes, feature values as dimensions, and blocks as vectors.
Hence, the 18-dimensional dataset is displayed as 210 vectors in 7 colors.

In Figure 2, the technique displays 68 scatterplots resulting from our experi-
ment. The figure shows many of scatterplots selected by the presented technique
well separate particular classes. Also, the figure shows that the layout of scatter-
plots never overlap them while not causing large empty spaces, by the effort of
the rectangle packing algorithm. We subjectively defined two groups of similarly
looking scatterplots in this figure. This section calls them “Group 1” and “Group
2”. “Group 1” denotes a group of scatterplots for which the red vectors are well
separated from vectors with other colors. “Group 2” denotes another group of scat-
terplots for which the black vectors are moderately separated from vectors with
other colors, in addition to the yellow and red vectors. This result demonstrates
the presented technique well gathers scatterplots which the same classes are well
separated closer in the display space.

Figure 3 shows a close-up view of the six scatterplots belonging to “Group 2.”
In addition, this figure demonstrates that our technique performs well in grouping
similarly looking scatterplots closer together in the display space. In Figure 3, the
two-dimensional values displayed above the scatterplots indicate the IDs of the
dimensions assigned to the two axes of the scatterplots. The second values of the
six pairs of dimensions indicate the following [Data-seg]:

9: Average of (R + G + B)/3 value over the region.
10: Average of the R value over the region.
15: Average of the (2B - (G + R)) value over the region.
16: 3D nonlinear transformation of the RGB values using the algorithm of Foley

and VanDam.

Here, R, G, and B are red, green, and blue components of the pixel values. These
results demonstrate that the variables of the three images (visualized as yellow,
red, and black vectors) are characteristic and similarly distributed.

The vectors displayed in Figure 4 (Left) represent the ideal positions of the
scatterplots calculated using the Isomap scheme. Similarly, the vectors displayed
in Figure 4 (Right) represent the final positions of the scatterplots shown in Figure
2. We subjectively made seven groups of vectors indicated as (1) to (7) to observe
their movements by the rectangle packing process. Figure 4 demonstrates that
vectors in these groups remain adjacent. Moreover, the figure indicates that the
scatterplots displayed in Figure 2 do not overlap and there are no unnecessary
gaps in the display space.
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Group 1

Group 2

Fig. 2 Visualization of an image segmentation dataset as 68 scatterplots.

Fig. 3 Close-up view of the six scatterplots belonging to “Group 2” shown in Figure 2.

4.2 Example 2: Vehicle specification data

In this subsection, we present visualization results obtained by applying our ap-
proach to a vehicle specification dataset constructed from websites containing
on-line vehicle catalogs [Data-veh]. This dataset contains 70 feature values and
various classes for 429 vehicles. Hence, the 70-dimensional dataset is displayed as
429 vectors. Here, the feature values include sales-related values such as price,
performance-related values such as displacement and fuel efficiency, and size-
related values such as width and length. In addition, this dataset contains var-
ious average values of 5-point subjective user evaluations, including appearance,
equipment, interior, engine power, cost performance, and the total.

We divided the vehicles according to the range of one of the average evaluation
values listed above, and colored the vectors according to the corresponding range
of evaluation values.

In Figure 5, we present the set of scatterplots obtained by applying our tech-
nique to the vehicle specification dataset. Here, the colors of the vectors denote
ranges of appearance evaluation values. Vehicles with the highest appearance eval-
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(1)
(1)

(2)

(2)
(3) (3)

(4)

(4)

(5)
(5)

(6)

(6)

(7)

(7)

Fig. 4 (Left) Ideal positions of scatterplots calculated by the Isomap scheme. (Right) Final
positions of scatterplots shown in Figure 2.

Fig. 5 Visualization of a vehicle specification dataset using scatterplots. Colors of vectors
denote appearance evaluation.

uation values are drawn in pink. We use red rectangles to indicate scatterplots
containing pink vectors that are well-separated from vectors with other colors.
Several of these scatterplots assign multiple common variables to their axes, such
as height of floor, evaluation of equipment, interior, cost performance, and total.
This result suggests that the height of floor is one of the most important specifica-
tion values correlated to the impression of appearance of vehicles. In addition, it
suggests that appearance evaluation is well correlated to other evaluation values.
Several of the scatterplots that are not well separated from the pink vectors are
indicated by a blue rectangle. Several of these scatterplots assign multiple common
variables to their axes, such as outer length, outer height, and outer width. An
unexpected result obtained is that the values of the outer size of a vehicle did not
have a major correlation to its appearance evaluation.

In Figure 6, we present another visualization example using a set of scatter-
plots. Here, the colors of vectors denote ranges of values of cost performance evalu-
ation. In several scatterplots, vehicles those cost performance are highly evaluated
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Fig. 6 Visualization of a vehicle specification dataset using scatterplot. Colors of vectors
denote cost performance evaluation.

(drawn in pink) are well-separated from vehicles those cost performance are poorly
evaluated (drawn in blue). Several of the scatterplots assign multiple common vari-
ables to their axes, such as appearance and total evaluations. This result suggests
that the evaluation of appearance strongly correlates to the cost performance and
total evaluation.

The two figure show that the layout of scatterplots never overlap them while
not causing large empty spaces, by the effort of the rectangle packing algorithm.

5 Conclusion

In this paper, we presented a technique for visualizing high-dimensional data as a
set of well-selected and arranged scatterplots. Our technique first selects meaning-
ful pairs of dimensions, and computes the similarity between arbitrary pairs of the
dimension pairs. It then calculates the ideal positions of scatterplots representing
the dimension pairs based on their similarity distances, and finally adjusts their
positionsby a rectangle packing algorithm. We presented examples of applying
our proposed technique to visualize image segmentation and vehicle specification
datasets.

As a future work, we would like to perform additional experiments in various
applications. Specifically, we would like to apply our technique to larger datasets
containing hundreds of dimensions and tens of thousands of vectors to demonstrate
its scalability. In addition, we would like to apply our technique to various fields of
datasets to demonstrate its usability as a generic visual analytics tool. Meanwhile,
we also would like to numerically and subjectively evaluate our technique. For
example, we would like to compare the distances among the scatterplots on the
display space with their similarity distances.
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