

 1 / 11

Generation of Organic Textures with Controlled Anisotropy and
Directionality via Packing Rectangular and Elliptical Cells

Takayuki Itoh
IBM Research, Tokyo Research Lab.
1623-14 Shimotsuruma, Yamato-shi

Kanagawa 242-8502 JAPAN
+81-46-215-4925

itot@computer.org

Kazunori Miyata
Japan Advanced Institute of Science and

Technology
1-1 Asahidai, Tatsunokuchi
Ishikawa 923-1292 JAPAN

+81-761-51-1818
miyatak@acm.org

Kenji Shimada
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

+1-412-268-3614
shimada@cmu.edu

Abstract
This paper presents a computational method for generating

organic textures. The method first tessellates a region into a set
of pseudo-Voronoi polygons using a particle model and then
generates the detailed geometry of each of the polygons using
Loop’s subdivision surface with fractal noise. Unlike previous
particle models, which are designed for creating hexagonal cell
arrangements, this particle model can also create rectangular cell
arrangements, often observed in organic textures. In either cell
arrangement, the method allows a user to control the anisotropy
of the cell geometry and the directionality of the cell
arrangements. A detailed three-dimensional cell geometry is then
created by adjusting a set of parameters that control the cells’
height and degree of skewing and tapering. A user can create
various types of realistic looking organic textures with ease, by
simply choosing a cell arrangement type, anisotropy, and
directionality, along with the geometry control parameters.
Keywords
texture synthesis, texture mapping, rendering, anisotropic
meshing, Voronoi tessellation, subdivision surface

1. Introduction
Texture is one of the attributes of an object’s surface, and it is

often the key to generating realistic images in computer graphics.
Textures represent various aspects of an object’s surface
properties, including optical properties, such as colors and
glossiness, and geometric properties, such as repeating bumps
and dents. Adding texture produces richer and more realistic
surface image than graphics with flat colored surfaces.

It would be tedious and time consuming, and thus not practical,

for a graphics designer to manually draw an organic texture. One
common way to avoid manual drawing is to scan a photograph of
a real organic texture and map it onto a surface geometry. This
approach, however, has the following problems:

(1) When the surface of an organic texture has small geometric
features, such as bumps and dents, their shades and
shadows do not match the lighting conditions used for
rendering the rest of the scene in a real photograph.

(2) When the aspect ratio of the real photograph is different
from that of the target surface, there will be unnatural
distortion of the mapped texture.

(3) When the boundary of the real photograph is different from
that of the target surface, which is usually the case, there
will be undesirable cut-offs or gaps around the boundary.

The method proposed in this paper solves these problems by:
(1) tessellating a region to be texture-mapped into a set of
polygons using a particle model, (2) generating a texture cell
geometry for each polygon using Loop’s subdivision surface with
fractal noise, and (3) rendering an image to be texture-mapped
onto the object’s surface. Because a particle system and
physically-based simulation is used to tessellate a region into a
set of pseudo-Voronoi polygons, the proposed method may seem
similar to some of the previous work in texture generation
especially the cellular texture method proposed by Fleischer et al.
[7]. However, this particle method, called Bubble Mesh and
originally proposed for mesh generation for FEM analysis, is
unique for two aspects that make this method particularly
suitable to organic texture generation: (1) the user can specify an
anisotropic force field, enabling anisotropic texture cell
generation, and (2) the user can specify not only hexagonal cell
arrangements, but also rectangular arrangements with controlled
directionality. After a region is tessellated into a set of pseudo-
Voronoi polygons, an initial polyhedral shape is defined for each
of the polygons by sweeping each polygon with tapering and
skewing effects. The polyhedral geometry is then refined and
rounded by Loop’s subdivision scheme, while fractal noise is
used to add fine geometric features.

With this method, a user can automatically create an organic
texture consisting not only of hexagonally arranged cells, but also
of orthogonally arranged cells with controlled anisotropy and
directionality. Because the method first tessellates a region into a

 2 / 11

set of polygonal cells, it generates a texture for an arbitrarily
shaped surface domain by simply specifying the geometry, cell
directionality, and a few rendering parameters, without manual
intervention.

The reminder of this paper is organized as follows: Section 2
describes the characteristics of organic textures, and Section 3
discusses some related work. The overview of this method is
then presented in Section 4. Section 5 presents an anisotropic
meshing technique that generates a pseudo-Voronoi tessellation.
Section 6 describes a method of generating realistic organic
surfaces and textures for each of the polygons. Section 7 shows
some results, and finally, Section 8 gives conclusions.

Figure 1. Examples of organic textures: crocodile (left), lizard (right).

2. Characteristics of organic textures
By observing real organic textures, such as the ones shown in

Figure 1, the following characteristic are observed:
• An organic texture consists mostly of cells in hexagonal or

rectangular arrangements. The basic shape of each cell is a
hexagon or a rectangle, respectively.

• In orthogonal cell arrangements, organic textures often
show distinct directionality, forming “stream lines.”

• Cell geometry is often stretched in a certain direction. The
aspect ratio of the anisotropy and its orientation may vary
over the entire surface domain.

There are two constraints making the generation of such
organic textures difficult: (1) the rectangular arrangement of the
cells, and (2) the anisotropic cell geometry. These two issues are
closely related to how a region is tessellated, and they must be
addressed in order to generate realistic looking organic textures.
Once a set of points or generators is located in a two-dimensional
domain, the popular Voronoi method can be used to tessellate the
domain into a set of polygons [11]. The larger challenge, however,
is to find a set of points with a rectangular arrangement in which
the rectangles’ orientations are aligned with specified stream
lines.

Such point locations cannot be created with the physically-
based particle systems previously proposed in computer graphics
research. Prior inapplicable particle systems include re-tiling of
polygon models as described by Turk [17], surface modeling by
Szeliski and Tonnesen [18], representation of implicit surfaces
by Figueiredo et al. [19], and by Witkin and Heckbert [20], and
anisotropic triangulation by Bossen and Heckbert [21]. This is
because each of these particle systems is designed to create a
hexagonal arrangement of points.

A cellular texture method [7] has also been proposed for the
generation of surface details; it can be applied to a rectangular
and an anisotropic tessellation. Because the method is an energy-

optimization approach, rather than a physically-based approach,
it requires expensive computations.

In this work, therefore, a different physically-based particle
system is used, called Bubble Mesh, which was originally
devised for solving various meshing problems in FEM analysis.
Bubble Mesh is devised to create different types of meshes,
triangular, quadrilateral, isotropic or anisotropic, by packing cells
of various shapes—circles for isotropic triangular meshes [1],
ellipses for anisotropic triangular meshes [2], squares for
isotropic quadrilateral meshes [3], and rectangles for anisotropic
quadrilateral meshes [4].

3. Related work
Previous research related to the present work has been

published in three areas: (1) tiling textures, which subdivide a
surface into sub-regions and generate procedural textures for
each sub-region; (2) modeling and rendering of organic materials,
which increase scene richness; and (3) cellular textures, which
apply particle systems for modeling surface details. Among these,
the cellular texture approach is most closely related to our
method because our method also uses a particle system.

3.1 Tiling textures
A reference book on visual geometry surveys various aspects

of patterns and tiling [9]. Yessios has presented methods of
generating common materials, such as stones and wood, with
two-dimensional line patterns [13]. Miyata has proposed an
enhanced method for automatically generating three-dimensional
stone wall patterns [12]. A limitation of such tiling textures is
that regions must be aligned carefully, or visible discontinuities,
such as seams and gaps, may be apparent.

3.2 Modeling and rendering of organic materials
Various methods have been proposed for the modeling and

rendering of organic materials. Reaction-diffusion equations,
which were originally proposed as a model of morphogenesis by
Turing, have been applied to the texture synthesis problem [14,
15]. Fowler et al. have reported a method of generating seashell
patterns using reaction-diffusion equations [16]. Worley reported
a cellular texture basis function [25], which complements
Perlin’s noise function [26].

3.3 Cellular texture
Fleischer et al. proposed a cellular texture method [7] that can

model surface details such as scales, feathers, and thorns. Their
method computes the locations, orientations, and other properties
associated with cellular particles. After a hexagonal arrangement
of a system of particles is obtained by optimization, each particle
is converted to a geometric unit with user-defined appearance
parameters. The detail of each texture cell is then rendered.

There are several similarities between their work and ours:
• Both methods use particle systems, and each particle has

energy potential.
• The energy potential is calculated based on particle-to-

particle distance and direction.
• The total energy potential is minimized iteratively.

By defining inter-particle or inter-cellular forces explicitly, we
speed up the cell tessellation process significantly. In the cellular
texture method of Fleischer et al., cells are located using an

 3 / 11

energy-optimization approach, and the energy of each cell is
calculated by a cost function consisting of several energy terms.
This requires extensive computations. This approach, on the
other hand, calculates the inter-cellular force explicitly and
solves the equation of motion, a second order ordinary
differential equation, using the fourth-order Runge-Kutta method.
Consequently, this method converges very quickly—all the
examples shown in this paper required only 10 to 20 seconds to
find the cell arrangements with an Intel Pentium III 650 MHz PC.

4. Method overview
The proposed method consists of three steps, as depicted in

Figure 2:
1. packing pattern generator: makes a packing pattern of

skin cells, a pseudo-Voronoi tessellation, using an
anisotropic triangular or quadrilateral meshing technique.
The resultant tessellation can be hexagonal or rectangular.
(described in Section 5)

2. skin geometry generator: generates each skin cell’s three-
dimensional geometry using Loop’s subdivision surface
method with fractal noise. (described in Section 6)

3. renderer: renders a final texture image based on the skin
geometry and lighting parameters.

Figure 2. Method overview: After a packing pattern is generated,

the skin geometry is generated. A textured image is then obtained by
rendering with specified lighting conditions.

5. Pseudo-Voronoi tessellation via anisotropic
meshing

This section describes the present approach to generating
packing patterns, pseudo-Voronoi tessellations, for organic
texture. This problem can be stated as follows.

Given:
• a two-dimensional geometric domain,
• a desired size distribution of cells, given as a scalar field,

• a desired directionality, given as a vector field, and
• a desired anisotropy, given as a scalar field,

Generate:
• a polygonal tessellation consisting primarily of

quadrilateral or hexahedral polygons compatible with the
specified cell sizes, directionality, and anisotropy.

The input size distribution can be specified by the user, or
automatically calculated according to the curvature of the input
domain or other metrics. The input directionality can be specified
by the user, or automatically calculated by interpolating from the
direction of the input boundary edges.

This approach is based on the observation that natural-looking
hexahedral or rectangular tessellations are geometric duals of
well-shaped triangular or quadrilateral meshes, as illustrated in
Figure 3. The algorithm performs pseudo-Voronoi tessellation in
three steps:

1. packing elliptic or rectangular cells closely in the domain
(Figure 3 left).

2. generating a triangular or quadrilateral mesh by
connecting the centers of the ellipses or rectangles
(Figure 3 center).

3. tessellating the domain into mostly hexagonal and
rectangular polygonal cells (Figure 3 right).

Figure 4 shows an example of a pseudo-Voronoi tessellation.
Figures 4 (a) and 4 (b) show the preferred cell size distribution
and preferred directionality of rectangular packing, respectively.
Figure 4 (c) depicts a closely packed set of rectangles. Figure 4
(d) shows the mostly quadrilateral mesh created by connecting
the centers of the rectangles. Figure 4 (e) shows the pseudo-
Voronoi tessellation.

Figure 3. (upper) Elliptic cells, a triangular mesh, and hexahedral
Voronoi polygons. (lower) Rectangular cells, a quadrilateral mesh,

and quadrilateral Voronoi polygons.

(a) Heights of grid points

represent preferred cell sizes.
(b) Preferred directionality of

rectangular packing

 4 / 11

(c) Closely packed

rectangles
(d) Primarily

Quadrilateral mesh
(e) Pseudo-Voronoi

tessellation

Figure 4. Four sub-steps of packing pattern generation

5.1 Close cell packing with proximity-based forces
The particle model implemented here is designed to efficiently

obtain a closely packed arrangement of elliptic, or rectangular
cells. A proximity-based force field is defined between pairs of
cells, so that the force field exerts a repelling force when the two
cells are located too close; an attracting force is exerted when the
two cells are separated by more than a specified distance. The
approach presented in this paper is based on the Bubble Mesh
method, originally proposed for triangular mesh generation [1].
This method tightly packs a set of circles using a force field
similar to the van der Waals force.

In the original Bubble Mesh method, the stable distance
between the centers of two adjacent circular cells is calculated as
the sum of the desired radii of the two circular cells. A user-given
scalar field specifies the radii of the cells. Here, we denote the
radii of the two cells as ir and jr ; the distance between the

centers of the cells as l ; the stable distance between the cells as

ji rrl +=0 ; the ratio of the current distance and 0l as 0/ llw = ;

and the corresponding linear spring constant at the target
distance as 0k . The force model used in the Bubble Mesh

method is described as a function of w . The essential

characteristic of this approach is that a repulsive force is applied
when 1<w , and an attractive force is applied when 1>w . As

shown in Figure 5(a), the force)(wf defined satisfies the

following conditions:

0)1(',0)0(',0)5.1()1(kffff −==−=

By solving for the above conditions, the function is written as:








≤

≤≤+−=
w

www
l

k
wf

5.10

5.10)
8

9

8

19

4

5
(

)(
23

0

0

The Bubble Mesh method was later extended to provide close
packing of elliptic cells [2]. This approach calculates the
directions of the major and minor axes of a cell from the given
directionality, and calculates the radii along these axes from the
given cell sizes and anisotropy. The effective distance between
two cells is calculated as the sum of the two lengths, measured
along the line segment that connects the centers of the two cells
from the center to the boundary of each cell. If the effective
distance is less than the desired stable distance, then the force is
negative (the cells are repelled from each other), otherwise the
force is positive. Let these two lengths be ijl and jil , as shown

in Figure 5 (b), then the effective distance is written as

jiij lll +=0 .

The method was also extended to achieve close packing of
square cells [3]. Here we denote a potential field around a cell,
which is obtained as an integration of the above force field, as

0PΨ . In order for square cells to align in an orthogonal

arrangement, we add four sub-potential fields
1PΨ ,

2PΨ ,
3PΨ ,

and
4PΨ , at the four corners of the square cell 1P , 2P , 3P , and

4P , to the original potential field Ψ , as shown in Figure 6 (a).

If the desired cell size is locally uniform, the radii of the four

sub-potential fields should be 0)12(r− , where 0r is the radius

of the central potential field
0PΨ . If graded cell sizes are

specified, however, the radii of the sub-potential fields should be
adjusted accordingly. The potential field shown in Figure 6(a) is
expressed as a weighted linear combination of the central
potential field and the four sub-potential fields, i.e.,

))(12(
43210 PPPPP Ψ+Ψ+Ψ+Ψ−+Ψ=Ψ .

Similar to the elliptic cell packing shown in Figure 5 (b), this
square cell packing approach was extended to rectangular cell
packing [4], as shown in Figure 6 (b).

In all cases, a point mass at the center of each cell, and the
effect of viscous damping are assumed. We then solve the
equation of motion numerically to find a tightly packed
configuration of cells using a standard numerical integration
scheme, the fourth-order Runge-Kutta method. The integration
process is terminated when the displacements of all cells in an
iteration become small. While solving the equation, the number
of cells in the domain is adjusted by checking the population
density. One cell is added around another cell when the smallest
w value between the cell and its adjacent cells is larger than a

user-specified value. One cell is deleted when the smallest w

value between that cell and its adjacent cells is smaller than a
user-specified value.

Figure 5. Circular cell packing and elliptic cell packing

0l

w

)(wf

1.0 1.5

l

ijl
jil

(a) Stable distance
and force function of

circular cells

(b) Stable distance
of elliptic cells

 5 / 11

Figure 6. Square cell packing and rectangular cell packing.

Input geometric models consist of a set of 3D polygons. As

shown in Figures 7(a)(b), cells are first packed along the
boundaries of the polygons, then packed inside the polygons. If
the input model is too fine, cells are packed using a simplified
model then projected onto the original input model.

The complexity of the cell packing process is regarded as
)(mnO , where n denotes the total number of square cells, and

m denotes the average number of cells that suffer attractive or
repulsive forces from another cell. To accomplish this, cells are
stored into a grid surrounding the entire input domain, in order to
search for the adjacent cells surrounding a given cell. Since it
extracts an almost constant number of adjacent cells, m is
treated as a constant. Consequently, the complexity of the
process is linear to the total number of cells, and therefore the
method should be faster than optimization-based methods such as
the cellular texture method.

5.2 Pseudo-Voronoi tessellation from packed cells
Given closely packed elliptic or rectangular cells, the present

approach generates anisotropic triangular or quadrilateral meshes
by connecting the centers of the cells.

To obtain the configuration of an anisotropic triangular mesh
from the centers of elliptic cells, an anisotropic Delaunay
triangulation algorithm was applied [2, 4]. While the original
Delaunay triangulation algorithm satisfies the condition that no
other vertices lie inside the circumcircle of a triangular element,
this anisotropic triangulation uses circumellipses defined by the
user-given directionality and anisotropy, instead of circumcircles.

To obtain an anisotropic quadrilateral mesh by connecting the
centers of a set of packed rectangular cells, a triangular-to-
quadrilateral mesh conversion algorithm was used [3, 4]. The
mesh conversion algorithm first tests all the possible
quadrilaterals formed by coupling two adjacent triangular
elements and then computes a score that measures the quality of
each resultant quadrilateral element. The algorithm then converts
the pairs of triangles to a set of quadrilaterals in the order of
their scores. It is acceptable to have some isolated triangles
remaining in the mesh because create a pseudo-Voronoi
tessellation can still be created for such a mixed mesh, and the
effect of a small number of triangles adds just a few non-four-
sided polygons to the final tessellation.

Figure 7. Cell packing and Voronoi tessellation processes.

Finally, this approach generates a pseudo-Voronoi tessellation

from these anisotropic triangular, quadrilateral, or mixed meshes.
This tessellation is obtained by connecting the center of each
mesh element to the centers of all adjacent mesh elements. As
shown in Figure 7(d), each internal mesh node is thus enclosed
by a polygon, formed by connecting the centers of all the mesh
elements that share the node.
The above method does not fill the entire given domain by the
Voronoi polygons, and therefore it requires special treatment
around the domain boundary. We have named the edge of the
Voronoi polygon, not shared by any other Voronoi polygon a
boundary edge. Boundary edges can be defined along a given
domain’s perimeter or at a set of user-specified line segments
inside the domain. When a node is connected to such boundary
edges, this approach connects the center of the boundary edges
instead of connecting the centers of mesh elements. Also, the
algorithm does not form pseudo-Voronoi polygons for a vertex on
a boundary edge. Consequently this approach generates pseudo-
Voronoi polygons which are well aligned along the mesh
boundary and along other user-specified line segments.

6. Organic texture generation
The organic texture is obtained by generating a skin texture for

each of the pseudo-Voronoi cells created by the method described
in the previous section. Each skin texture is generated in the
following three steps:

(1) initial skin mesh generation for each pseudo-Voronoi
polygon

(2) smoothing of the initial skin mesh by a subdivision
surface method

(3) small geometric features generation with fractal noise
Sections 6.1, 6.2, and 6.3 describe each step in more detail.

6.1 Initial skin mesh generation
Each pseudo-Voronoi polygon, or cell polygon, generated by

the anisotropic cell packing technique described in Section 5,
must be transformed into a realistic skin surface geometry.

First, depending on the type of target organic texture, it is

0P

1P 2P

3P4P
0P 0P

1P 2P

3P4P
0P

(a) A square cell
realized using five

circular force fields.

(b) A rectangular cell
realized using five
elliptic force fields.

(a) cells on the
domain boundary

(b) cells inside
domain

(c) mesh connecting
centers of cells

(d) Voronoi tessellation (e) Boundary treatment

 6 / 11

possible to either add a gap between the cells, or pack the cells
more tightly by scaling each of the cells. The amount of scaling is
specified by a scaling parameter, Sv.

Next, an initial three-dimensional skin mesh is obtained by
sweeping the polygon of each cell in the normal vector
direction, n

r

. The height of this sweeping operation, H, is given

by:

SrSkinSizeH ×= ,

where SkinSize is the average distance from the center of gravity
of a cell polygon to the corners of the polygon, and Sr a user-
specified sweeping parameter. The sweeping operation defines a
prism.

This prism is then deformed by displacing the top corners,
1V ′ ,

2V ′ , …, and nV ′ , randomly within a specified displacement range,

as shown in Figure 8 (b). The distortion parameter, Dr, can be
adjusted to create various skin shapes. We define the range of
this random displacement by:

erRandomNumbDrSkinSizentRangeDisplaceme ××= ,

where RandomNumber is a random number between 0 and 1.
After the initial skin shape is deformed, the prism can be

skewed, as shown in Figures 9 (a) and 9 (b), according to a

specified flow vector F
r

. Each of the top corners,
1V ′′ ,

2V ′′ , …，

and
nV ′′ , is displaced by vector Fs

r

, where s is a user-defined

skewing parameter. This process adds some overlapping layers of
skin cells. Choosing a larger skewing parameter can thus
generate scale-like skins.
The prism can be further deformed by a tapering operation, as
shown in Figures 10 (a) and 10 (b), by displacing each of the top
corners of the prism, T1, T2, …，and Tn. Each top corner, Ti, is
displaced by a centripetal vector)(ivwt

vv − , where t is the user-

defined tapering parameter and w
v is the center of gravity of the

base polygon. Setting a larger tapering parameter yields thorny
skins. The inter-element collisions are not computed on the final

element shapes, and therefore if the skew variable is set high
enough, elements will intersect.

After all of these deformations are applied, the shape of each
skin cell is represented as a coarse triangular mesh, called the
initial skin mesh. The final skin mesh is obtained by refining and
smoothing the initial skin mesh using Loop’s surface subdivision
scheme, as described in the next section.

6.2 Mesh refining and smoothing
After initial skin meshes, or initial control meshes, are

generated, their sharp corners must be smoothed out. This
smoothing is archived by using a surface subdivision method.

Several surface subdivision methods have been proposed,
including Doo-Sabin’s method [6], Catmull-Clark’s method [5],
and Loop’s method [10]. Loop’s method is used here because it
generates triangular patches and works well with this
implementation.

In Loop’s method, new vertices which are shown as black dots
in Figure 11 (b), are inserted at the midpoint of each edge of a
given control mesh. The vertices are then connected to divide an
initial triangular element into four smaller triangles.

6.3 Surface displacement
In parallel with the mesh smoothing process, skin mesh nodes

can be further displaced with fractal noise in order to add small
geometric features, such as bumps and dents, to a surface.

Three-dimensional fractal noise is generated by recursively
subdividing a triangular mesh element into smaller triangles, as
shown in Figure 12. A new node is added at the midpoint of each
side of the triangle and the nodal point is then displaced in the
vertical direction [8]. The displacement vectors for nodal points
at each subdivision level are stored and merged into the
subdivision surface geometry, as shown in Figure 13.

Figure 8. Initial skin shape: (a) sweeping base polygon, and (b)

adding small random displacement

Figure 9. Skewing operation: (a) flow vector that defines the direction

of skewing, and (b) skewed prism.

Figure 10. Tapering operation: (a) centripetal displacement, and

(b) tapered prism.

Figure 11. Mesh subdivision: (a) Initial mesh. (b) After subdivision.

 7 / 11

Figure 12. Three-dimensional fractal noise: The left triangle is
subdivided into four smaller triangles by displacing each midpoint of

the edge. This subdivision process is repeated recursively.

Figure 13. The final skin shape is obtained by adding fractal noise to the

subdivision surface mesh.

7. Results
This section shows various organic textures that demonstrate

the advantages of this proposed texture generation method.
As described in Sections 5 and 6, there are many parameters

that can be adjusted, to create various types of organic textures:
Ca: Degree of anisotropy, or aspect ratio of cell geometry
Sv: Scaling parameter of cell polygon
Sr: Sweeping parameter of initial skin mesh
Sc: Skewing parameter of initial skin mesh
Tc: Tapering parameter of initial skin mesh
Dr: Distortion parameter of initial skin mesh (0.0 < Dr < 1.0)
Fd: Fractal dimension of fractal noise controlling skin’s

surface roughness (1.0 < Fd < 2.0)
Af: Amplitude of fractal noise

Table 1 summarizes all the parameters used to create the textures
shown in Figures 14, 15, 16, and 17.

Changing the degree of anisotropy, or aspect ratio, Ca
One unique capability of this texture generation method is to

control the anisotropy of the texture cells. Figure 14 shows how
texture appearances change with different aspect ratios. By
setting a high aspect ratio, the obtained textures are stretched in
specified flow directions.
Changing the skew coefficient, Sc

Figure 15 shows the effect of changing the skewing parameter,
Sc. Specifying a larger skewing parameter leads to some
overlapping layers of texture cells, yielding scale-like skins.

Changing the amplitude of fractal noise, Af
Textures shown in Figure 15, compared with those in Figure

14, have bumpier surfaces due to the larger amplitude of fractal
noise.

Changing the tapering parameter, Tc
Figure 16 shows the effect of changing the tapering parameter.

The skins bulge out using a larger taper parameter..

Hexagonal cell arrangement and rectangular cell
arrangement

Figure 17 shows more complicated organic textures. One of
the advantages of this method is to be able to create cells packed
in both hexagonal arrangements and rectangular arrangements. If
a triangular mesh is used for generating the pseudo-Voronoi
tessellation, the resultant cell arrangement becomes hexagonal,
and if a quadrilateral mesh is used, then the resultant cell
arrangement becomes rectangular. Figures 17 (a), (b), and (c)
show organic textures with both hexagonal and rectangular cell
arrangements in a single texture. All the examples shown in
Figure 17 have some internal restriction lines. Note that the cells
are well aligned along these restriction lines.

Application of organic textures to three-dimensional
geometry

The proposed method can generate organic textures and map
them onto a three-dimensional object; figures 18 and 19 show
examples of this. In both examples, cells are packed in a
rectangular arrangement and its directionality is specified so that
the texture cells align well along the longitudinal direction of the
legs.

Computational time
Computational time changes depending on the number of

texture cells to be generated. In the examples shown in Figures
14, 15, 16, and 17, it takes 10 to 40 seconds to generate pseudo-
Voronoi tessellation; it takes approximately 3 to 6 more seconds
to generate the detailed skin geometry on an Intel Pentium III 933
MHz processor. The size of the generated texture images in all
the examples is 512 by 512. Table 2 summarizes the computation
time.

Rendering method
For the examples shown in Figures 14, 15, 16, and 17, the

three dimensional meshes are laid on a plane and rendered in
parameter space using in-house software. For the examples
shown in Figure 18 and 19, the three dimensional meshes are
imported into the CG software, 3D Studio MAX, and rendered.
The number of generated micro-triangles depends on the number
of the cells and their shapes, and is about 0.5 million on average.

Visual justification
The examples of Fleischer's method [7] were obtained by

performing texture map on the surfaces. The methods treated
herein do not use texture maps; therefore, the visual quality of
these results might be lower than Freischer's results, but the
geometrical richness(or variety) is competitive with them. The
intention is to continue extending this method to generate surface
attributes, such as colors and optical features, procedurally for
each skin cell.

Table 1. List of parameters used for generating textures

shown in Figures 14, 15, 16, and 17.

Fig. No. Ca Sv Sr Sc Tc Dr Fd Af

Fig.14 (a) 1.5 1.4 1.0 0.0 0.2 0.0 1.1 0.1

Fig.14 (b) 2.0 1.4 1.0 0.0 0.2 0.0 1.1 0.1

Fig.14 (c) 3.0 1.4 1.0 0.0 0.2 0.0 1.1 0.1

Fig.15 (a) 2.0 1.4 2.0 0.0 0.8 0.05 1.1 0.2

Fig.15 (b) 2.0 1.4 2.0 2.0 0.8 0.05 1.1 0.2

 8 / 11

Fig.15 (c) 2.0 1.4 2.0 3.0 0.8 0.05 1.1 0.2

Fig.16 (a) 2.0 1.3 1.0 0.0 0.0 0.05 1.1 0.1

Fig.16 (b) 2.0 1.3 1.0 0.0 0.2 0.05 1.1 0.1

Fig.16 (c) 2.0 1.3 1.0 0.0 0.5 0.05 1.1 0.1

Fig.17 (a) 2.0 3.0 1.0 2.0 0.7 0.05 1.1 0.1

Fig.17 (b) 2.0 1.4 0.8 0.0 0.2 0.05 1.1 0.1

Fig.17 (c) 2.0 1.6 2.0 0.0 0.2 0.1 1.1 0.1

Fig.17 (d) 2.0 1.4 1.0 0.0 0.1 0.0 1.1 0.1

Table 2. List of computation times for generating textures shown in

Figures 14 and 17.

Fig. No. Time for pseudo-Voronoi
tessellation (sec.)

Time for detailed skin
generation (sec.)

Fig. 14(a) 31 5.3

Fig. 14(b) 34 4.2

Fig. 14(c) 32 3.8

Fig. 17(b) 32 4.8

Fig. 17(c) 16 4.0

Fig. 17(d) 10 3.9

 9 / 11

(a) Ca = 1.5 (b) Ca = 2.0 (c) Ca = 3.0

Figure 14: Textures with different degrees of anisotropy, or aspect ratios

(a) Sc = 0.0 (b) Sc = 2.0 (c) Sc = 3.0

Figure 15: Textures with different values of the skewing parameter

(a) Tc = 0.0 (b) Tc = 0.2 (c) Tc = 0.5

Figure 16: Textures with different values of the tapering parameter

 10 / 11

(a) Texture #1 (b) Texture #2

(c) Texture #3 (d) Texture #4

Figure 17: Various organic textures: In each example, input boundaries are shown at top left,
Pseudo-Voronoi polygons at bottom left, and a generated texture image on the right.

Figure 18: Textured leg 1. Figure 19: Textured leg 2.

 11 / 11

8. Conclusion
A method has been presented for generating a variety of

organic textures with controlled anisotropy and directionality. A
new particle model is adopted so that texture cells can be packed,
not only in hexagonal arrangements, but also in rectangular
arrangements. By simply specifying a boundary shape, texture
cell directionality, anisotropy, and a few parameters that control
the geometric details of each texture cell, a realistic image of an
organic texture can be generated automatically.

In the future, we would like to extend our work in the
following areas:

Weathering
The organic textures presented in this paper are pristine and

immutable, even though real ones are not. Some weathering
effects [22, 23] such as wear, abrasion, and wounds are also
important factors in improving the reality of a computer-rendered
organic texture image.

Varied skin conditions
In our method, a cell’s shape is generated with a procedural

approach. An interesting consideration for future work is the
generation of an organic texture from real sample images or the
simulation of various situations such as wet [24] and dirty skins.

References

[1] K. Shimada, D. C. Gossard, Bubble Mesh: Automated

Triangular Meshing of Non-manifold Geometry by Sphere
Packing, Third Symposium on Solid Modeling and
Applications, pp. 409-419, 1995.

[2] K. Shimada, A. Yamada, T. Itoh, Anisotropic Triangulation
of Parametric Surfaces via Close Packing of Ellipses,
International Journal on Computational Geometry &
Applications, Vol. 10, No. 4, pp. 417-440, 2000.

[3] K. Shimada, J. Liao, T. Itoh, Quadrilateral Meshing with
Directionality Control through the Packing of Square Cells,
7th International Meshing Roundtable, pp. 61-76, 1998.

[4] N. Viswanath, K. Shimada, T. Itoh, Quadrilateral Meshing
with Anisotropy and Directionality Control via Close
Packing of Rectangular Cells, 9th International Meshing
Roundtable, pp. 227-238, 2000.

[5] E. Catmull and J. Clark, “Recursively generated B-spline
surfaces on arbitrary topological meshes,”
Computer Aided Design, Vol.10, No.6, pp. 350-355, 1978

[6] D. Doo and M. Sabin, “Analysis of the behavior of recursive
division surfaces near extraordinary points,” Computer
Aided Design, Vol.10, No.6, pp. 356-360, 1978

[7] K.W. Fleischer, et al., “Cellular texture generation,”
Proceedings of SIGGRAPH ’95, pp. 239-248, 1995

[8] A. Fournier, D. Fussell, and L. Carpenter, “Computer
rendering of stochastic models,” Communications of the
ACM, Vol. 25, No. 6, pp. 371-384, 1982

[9] B. Grünbaum and G.C. Shephard, Tiling and Patterns, W.H.
Freeman and Co., New York, 1987

[10] C. Loop, “Smooth subdivision surfaces based on triangles,”
Master’s thesis, University of Utah, Department of
Mathematics, 1987

[11] K. Mehlhorn and S. Näher, LEDA: a platform for
combinatorial and geometric computing, pp. 686-707, 1999

[12] K. Miyata, “A method of generating stone wall patterns,”
Proceedings of SIGGRAPH '90, pp. 387-394, 1990

[13] C.I. Yessios, “Computer drafting of stones, wood, plant and
ground materials,” Computer Graphics, Vol.13, No.2, pp.
190-198, 1979

[14] G. Turk, “Generating textures for arbitrary surfaces using
reaction-diffusion,” Proceedings of SIGGRAPH '91, pp. 289-
298, 1991

[15] A. Witkin and M. Kass, “Reaction-diffusion textures,”
Proceedings of SIGGRAPH '91, pp. 299-308, 1991

[16] D.R. Fowler, H. Meinhardt, and P. Prusinkiewicz,
“Modeling seashells,” Proceedings of SIGGRAPH '92, pp.
379-388, 1992

[17] G. Turk, “Re-tiling polygonal surfaces,” Proceedings of
SIGGRAPH ’92, pp. 55-64, 1992

[18] R Szeliski and D Tonnesen, Surface modeling with oriented
particle systems, Proceedings of SIGGRAPH ’92, pp. 185-
194, 1992

[19] L. H. Figueiredo, J. M. Gomes, D. Terzopoulos, and L.
Velho, Physically-based methods for polygonization of
implicit surfaces, Proceedings of Interface ’92, pp. 250-257,
1992

[20] A. P. Witkin and P. S. Heckbert, Using particles to sample
and control implicit surfaces, Proceedings of
SIGGRAPH ’94, pp. 269-277, 1994

[21] F. Bossen and P.S. Heckbert, A pliant method for
anisotropic mesh generation, Proceedings of 5th
International Meshing Roundtable, pp. 63-74, 1996

[22] J. Dorsey and P. Hanrahan (1996), “Modeling and rendering
of metallic patinas,” Proceedings of SIGGRAPH '96, pp.
387–396. 1996

[23] J. Dorsey, et al (1999), “Modeling and Rendering of
Weathered Stone,” Proceedings of SIGGRAPH '99, pp. 225-
234. 1999

[24] H.W. Jensen, J. Legakis, and J. Dorsey, Rendering Wet
Materials, Proceedings of Tenth Eurographics Workshop on
Rendering, Granada, Spain, pp. 273-282, 1999

[25] S. Worley, A Cellular Texture Basis Function, Proceedings
of SIGGRAPH ’96, pp.191-294, 1996

[26] K. Perlin, An image synthesizer, Proceedings of
SIGGRAPH ’85, pp. 287-296, 1985

