
- 1 -

Title:

A Method of Generating Pavement Textures Using the Square Packing Technique

Authors:

Kazunori Miyata

Department of Imaging Art, Tokyo Institute of Polytechnics

2-9-5 Honcho, Nakano-ku, Tokyo 164-8678, Japan

Phone: +81-3-5371-2716 Fax: +81-3-5371-2716

Email: miyata@img.t-kougei.ac.jp / miyatak@acm.org

Takayuki Itoh,

IBM Research, Tokyo Research Lab.

1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502, Japan

Phone: +81-46-215-4925 Fax: +81-46-273-7428

Email: itot@computer.org

Kenji Shimada,

Mechanical Engineering, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213, USA

Phone: +1-412-268-3614 Fax: +1-412-268-3348

Email: shimada@cmu.edu

- 2 -

Authors’ biographies:

Kazunori Miyata has been an Associate Professor in the

Department of Imaging Art at the Tokyo Institute of Polytechnics

(TIP) since 1998. Prior to joining TIP, he was an advisory

researcher at IBM Research, Tokyo Research Laboratory. He

received a B.S. degree from Tohoku University in 1984, and a

M.S. and Ph.D. from the Tokyo Institute of Technology in 1986

and 1997. His research mainly focuses on fractals, rendering & modeling natural objects,

texture generation, and multimedia applications. He is a member of ACM and IPSJ

(Information Processing Society of Japan).

Takayuki Itoh has been a researcher at IBM Research, Tokyo

Research Laboratory (TRL) since 1992. He received his B.S.,

M.S., and Ph.D. degrees from the department of electronics

and communications in Waseda University in 1990, 1992, and

1997. His research focuses mainly on mesh generation,

surface reconstruction, photo-realistic rendering, scientific visualization, and information

visualization. He is a member of IEEE, ACM, and IPSJ (Information Processing Society of

Japan).

- 3 -

Kenji Shimada is an Assistant Professor in the Department of

Mechanical Engineering and the Robotics Institute at Carnegie

Mellon University. His research interests are in the areas of

geometric modeling, computational geometry, and computer

graphics. Prior to joining Carnegie Mellon, he was Manager of

Graphics Applications at IBM Research, Tokyo Research

Laboratory. Shimada received the IPSJ Yamashita Award and the Best Paper Award from

NICOGRAPH in 1994, and an NSF CAREER Award in 2000. He holds a B.S. and M.S.

from the University of Tokyo, and a Ph.D. from the Massachusetts Institute of Technology.

- 4 -

Abstract:

This paper presents a method of generating pavement textures using the square packing

technique. A pattern of packed square cells for a given area is generated by performing

particle simulation with proximity-based forces. The pavement texture is then obtained by

generating a stone shape for each cell with the subdivision surface method and then

applying fractal noise to create a detailed surface geometry. In this method, the boundary

shape of the pavement and the average size of the pavement stones are specified as input

geometric data, along with attribute data such as the roughness, color, and optical attributes

of the stones. The proposed method automatically generates a realistic looking pavement

texture for an arbitrarily shaped pavement with much lower computational cost than

previous methods.

Keywords:

Texture, Pavement, Square Packing, Stone, Subdivision Surface

- 5 -

1. Introduction

One of the main objectives in the computer graphics area is highly realistic image

synthesis. Texture, which is an attribute of an object’s surface, is critical to generating

realistic images. A texture is one of the surface attributes of an object, consisting of many

components, such as color, gloss, and bumps. By simply mapping a texture to a surface,

we can obtain a much richer image than a flat color surface.

Realistic image synthesis of an arbitrarily shaped pavement is one of the applications of

textures. It would be tedious and time consuming, and thus not practical, for a graphics

designer to manually illustrate such textures of paving stones. On the other hand, although

it is possible to generate a reasonably satisfactory image by performing texture mapping

using a real photograph of a pavement, this approach has the following problems:

(1) When the surface of a pavement is bumpy, the shades and shadows in a real

photograph do not match a computer-generated image.

(2) When the aspect ratio of a photograph differs from that of a pavement, there will be

unnatural seams on the texture-mapped surface.

(3) The boundary of a photograph usually differs from that of a pavement, and this causes

undesirable cut-offs of the paving stones at the boundaries or gaps between paving

stones and the boundaries.

The proposed pavement simulation method offers a solution to these problems. The

packing pattern that dictates the placement of each paving stone is obtained by means of

the square packing technique. The packing pattern for a given road area is generated by

performing dynamic simulation of scattered square particles with proximity-based

inter-particle forces. A pavement texture is then obtained by: (1) generating the geometry

of each stone by a subdivision surface method, and (2) rendering a texture image with

fractal noise for each stone.

Our method makes it possible to obtain a desired pavement texture that covers an

- 6 -

arbitrarily shaped road by simply specifying the road shape and a few parameters, without

manually modeling or rendering each paving stone.

The next section describes the features of a pavement and shows some related work. It

is followed by an overview of the method in Section 3. Section 4 presents the square

packing method that generates a packing pattern of square cells, representing the paving

stones. Section 5 gives a method of generating realistic stone shapes and textures for

each of the cells. Section 6 demonstrates some results, and finally, Section 7 discusses

some ideas for future work.

2. Background and Related Work

In this section, we discuss some characteristics of pavements and describe related work.

2.1 Characteristics of pavement

By observing real pavements, such as the ones shown in Figure 1 and in the reference

[Shig76], we find the following features of paving stones:

• Paving stones form a “stream” along a road.

• Paving stones are placed uniformly.

In consideration of these characteristics, a particle model that satisfies the following

conditions looks promising for generating a packing pattern of paving stones:

• The particles are well aligned along the specified road shape.

• The particles are automatically and uniformly filled within a complex road boundary.

Such a particle model, called the square packing method, for quadrilateral FEM mesh

generation has been proposed [Shim98]. In this paper we adopt the same particle model for

the texture generation problem of stone pavements.

 Another well-known partitioning method is the Voronoi diagram [Mehl99]. In applying the

Voronoi diagram, however, it is difficult to align each divided subarea along a specified

Figure 1

- 7 -

domain. The Voronoi diagram is thus not suitable for our objectives.

 In summary, the aim of our method is to generate pavement textures in which the paving

stones are tightly packed, well aligned along the road, forming a "stream" in a specified

direction or in the direction of the road.

2.2 Related Work

 Previous work has been published in three related categories. These include: tiling

textures that subdivide surfaces into regions and generate procedural textures for each

region; modeling and rendering methods for ground materials that provide scene richness;

and cellular texturing that applies particle system techniques for modeling surface details.

Among these, the cellular texture approach is closely related to our method, and therefore

most of this section discusses this method.

2.2.1 Tiling Texture

A reference book on “visual geometry” surveys various aspects of patterns and tiling

[Grün87]. C.I. Yessios has presented methods of drafting common materials, such as

stones and wood, with two-dimensional line patterns [Yess79]. K. Miyata has proposed an

enhanced method for automatically generating three-dimensional stone wall patterns

[Miya90]. A limitation of such tiling textures is that regions must be aligned carefully, or

visible discontinuities, such as seams and gaps, may occur.

2.2.2 Modeling and rendering of ground materials

Some methods have been proposed for the modeling and rendering of ground materials.

For a long time, fractal geometry has been applied to model terrains [Peit88]. K. Perlin

presented a method for representing solid marble textures by means of a turbulence

function [Perl85]. J. Dorsey described a method for the modeling and rendering of

- 8 -

changes in the shape and appearance of stone [Dors99]. These methods are widely used

in CG software, and they help provide scene richness.

2.2.3 Cellular Texture

K.W. Fleischer et al has proposed a cellular texture method [Fleis95], which models

surface details such as scales, feathers, or thorns. Their method computes the locations,

orientations, and other values associated with cellular particles. Each particle is converted

to a geometric unit with appearance parameters, and then the final surface details are

obtained.

There are some similar points between their work and ours, as follows:

• Both methods use particle systems, and each particle has energy potential.

• The energy potential is calculated from particle-to-particle distance and direction.

• The total energy potential is minimized iteratively.

One unique feature of our method, however, is the usage of inter-particle or inter-cellular

forces, which significantly speeds up the texture generation process. In the cellular texture

method cells are located by using an energy-optimization approach, and the energy of each

cell is calculated by a cost function consisting of several parameters. This requires

extensive computations. Actually, they reported that their method may take many hours in

some cases. Our approach, on the other hand, calculates the inter-cellular force explicitly

and solves a simple differential equation of the forces. Consequently, our method usually

converges very quickly. All examples shown in this paper required only seconds to find

good locations for the cells.

In our method, it is also easy to implement other cell shapes. We have utilized various

cell-packing models, such as circular cells [Shim93], elliptical cells [Shim97], and

rectangular cells [Visw00], and developed them using the same model. In all of these

models we can flexibly control the sizes and alignment of the cells, which is useful for many

- 9 -

kinds of surfaces. This makes it possible to generate complicated cell patterns in just

several seconds. In this paper, however, we will focus on implementation with square-cell

packing only.

3. System Architecture

 Before describing our method in detail, this section discusses the process overview, the

data structure of a texture, and how to render the texture data.

3.1 Process Overview

The process is arranged into three modules, as shown in Figure 2:

• packing pattern generator: makes the packing pattern of paving stones for a specified

road shape by means of the square packing method.

• stone texture generator: generates each stone’s texture for the obtained packing

pattern by using the subdivision surface method and a fractal noise function.

• renderer: takes texture data and lighting parameters and renders the final texture

image.

3.2 Data Structure of a Texture

Texture is the surface attribute of an object and has many components, such as

roughness, color, and gloss. In our method, a texture is divided into three data planes:

bump, color, and optics, the values of which are stored at each point of a 2D data plane, as

shown in Figure 3.

The bump plane has values of displacement, H, from a base level.

The color plane has surface color values made up of the three components of the RGB

color model, red, green, and blue (R, G, B), each represented by eight bits of data.

The optics plane gives the optical features of a surface, based on a shading model. In

Figure 3

Figure 2

- 10 -

this paper, we use Phong's model, whose components are ambience, diffusion, specular

quality, and shininess (A, D, S, N). Because this creates a large amount of data to store

every optical attribute for each data cell, these attribute values are stored in a look-up table,

and the data on the optics plane stores only an index into the look-up table.

 The generated stone texture data is scan-converted and stored into the three data planes.

3.3 Rendering Texture Data

The bump data plane is used for calculating the normal vector at each point of the surface

in the shading process. The color and optics data planes are used to change the color and

optical attributes of each paving stone. The texture image is then rendered by a

conventional rendering method with one light source. Our method supports both a parallel

light source and a point light source.

4. Square Cell Packing

This section describes our basic approach [Shim98] to the cell generation problem by

which we generate a pattern for a stone pavement.

Given:

- a 2D geometric domain,

- a desired size distribution of cells, given as a scalar field, and

- a desired directionality, given as a vector field,

Generate:

- a set of well-packed and well-aligned square cells that is compatible with the given

cell sizes and directionality.

Figure 4 shows an example of an input domain, scalar field, vector field, and output

square cells.

Our approach uses a particle model to obtain the optimal locations of cells. A

Figure 4

- 11 -

proximity-based force field is defined between two cells such that the force field exerts an

attracting force or a repelling force, moving the cells so that they touch each other along

their edges. Also assuming a point mass at the center of each cell and by allowing for the

effects of viscous damping, we solve the equation of motion numerically to find a tightly

packed configuration of cells. While solving the equation, our approach controls the

number of cells in the domain by checking the population density and then adaptively

adding or removing cells.

4.1 Directionality

It is important that the directionality is specified over the entire domain so that the packed

square cells are well-aligned and natural-looking. In this paper, we assume that square

cells can form a pattern resembling a stone pavement by having a directionality well-aligned

along the domain boundary. Our implementation automatically generates such a

directionality by using the following equation,

∑
=

=
n

i i

i

dn
1

2

1 s
v

 (1)

Here, we assume that the domain boundary consists of n segments, and is denotes

the vector of the i th segment of the domain boundary. As shown in Figure 5, v is the

direction vector at an arbitrary point p inside the domain, and id denotes the distance

between p and is .

To store the directionality we define a background grid that covers the whole domain.

Directionality vectors are explicitly calculated according to Equation (1) and are stored at

the grid nodes. For an internal point of a grid cell the directionality vector is calculated by

linearly interpolating the directions at the four grid nodes.

4.2 Proximity-based potential fields and forces

Our approach in this paper is based on the bubble mesh method, originally proposed for

Figure 5

- 12 -

triangular mesh generation [Shim93, Shim95]. This method tightly packs a set of circular

particles, or bubbles, by defining a force field similar to the van der Waals force.

We denote the positions of the centers of adjacent particles i and j as ix and jx ;

the current distance between the two centers as),(jil xx ; the target stable distance as

))()((
2

1
),(0 jiji ddl xxxx += , which is also the desired particle size specified by the scalar

field)(xd ; the ratio of the current distance and the target distance as

),(

),(
),(

0 ji

ji
ji

l

l
w

xx

xx
xx = ; and the corresponding linear spring constant at the target distance

as 0k . The force model used in the bubble mesh method is then written as:

 (2)

By integrating the above force field, we obtain the following potential field around a particle:









≤

≤≤−+−−=Ψ
w

wwww
l

k
wP

5.1,0

5.10),
256

153

8

9

24

19

16

5
(

)(
34

0

0

 (3)

Figure 6(a) shows this potential field function used in the bubble mesh. This potential field

applies a repelling force between two adjacent particles if l is smaller than 0l , or if

0.1<w . It applies an attracting force if l is larger than 0l , or if 5.10.1 ≤< w . No force

is applied if two particles are located exactly at the stable distance or if they are located

much farther apart, the cases where 0.1=w or w<5.1 .

We extended the potential field to achieve a close packing of square cells, as shown in

Figure 6(b). There are only four stable locations around a square cell, corresponding to

the situation where two square cells are placed side by side with their edges touching each

other. In order to force the cells to align this way, we need to add to the original potential

field four sub-potential fields
1PΨ ,

2PΨ ,
3PΨ , and

4PΨ at the four corners of a square cell,









≤

≤≤+−
=

w

www
l

k
wf

5.1,0

5.10),
8

9

8

19

4

5
(

)(
23

0

0

Figure 6

Figure 7

- 13 -

1P , 2P , 3P and 4P , as shown in Figure 7.

If the desired cell size is locally uniform the radii of the four sub-potential fields should be

0)12(r− , where 0r is the radius of the central potential field
0PΨ . If graded cell sizes

are specified, however, the radii of the sub-potentials should be adjusted accordingly.

The potential field shown in Figure 6(b) is thus expressed as a weighted linear

combination of the central potential field and the four sub-potential fields, i.e.,

))(12(
43210 PPPPP Ψ+Ψ+Ψ+Ψ−+Ψ=Ψ . (4)

4.3 Force-balancing configuration of square cells

Given the proximity-based inter-cellular force, we apply physically based relaxation to find

a closely packed configuration of square cells. This configuration also yields a static force

balance.

Our approach is to assume a point mass m at the center of each cell and the effect of

viscous damping c , and to solve the following equation of motion by using a standard

numerical integration scheme, such as the fourth-order Runge-Kutta method.

nittctm ii ,...2,1),()(')(" ==+ fxx (5)

In solving Equation (5) numerically, we adaptively adjust the number of square cells

packed in the domain. We generate an initial configuration by using octree subdivision,

and although this process gives a reasonably good guess of an appropriate number of cells

to fill the domain, it is still not optimal. The method therefore utilizes a procedure to check

the local population density and add more cells in sparse areas and delete cells in

overcrowded areas.

5. Stone Texture Generation

The pavement texture is obtained by generating a stone texture for each cell that is

created by the square packing method. Each stone texture is generated in the following

- 14 -

three steps:

(1) Basic stone mesh generation

(2) Mesh smoothing by a subdivision surface method

(3) Surface displacement with fractal noise

The following subsections describe the process in detail.

5.1 Basic stone mesh generation

 Each cell generated by the square packing method must be transformed into a realistic

stone shape. First, each cell is scaled if necessary. This either creates space between

the cells or packs the cells more tightly, depending on the type of pavement being created.

Next, a three dimensional shape is obtained by sweeping the base of each cell vertically by

a specified height, as shown in Figure 8(a).

The basic stone shape is then obtained by deforming this cube, displacing each top

corner, A’, B’, C’, and D’, randomly within the specified displacement range, as shown in

Figure 8(b). The displacement ratio parameter, Dr, can be adjusted to create various

stone shapes, and the displacement range is given by:

)0.1(erRandomNumbDrStoneSizentRangeDisplaceme ×+×= , (6)

where RandomNumber is a random number with a uniform distribution. Artificial, uniform

paving stones are obtained by setting a low displacement range, and natural, varied paving

stones are generated by setting a high displacement range.

The initial shape of each stone is then represented by a triangular mesh. The final stone

shape is obtained by refining this basic mesh through smoothing.

5.2 Mesh smoothing

After the basic stone meshes, or initial control meshes, are generated, their sharp corners

must be smoothed out. To do this we use a surface subdivision method.

Figure 8

- 15 -

5.2.1 Subdivision surface method

Several surface subdivision methods have been proposed, such as Doo-Sabin’s method

[Doo78], Catmull-Clark’s method [Catm78], and Loop’s method [Loop87]. We use Loop’s

method because it generates triangular patches and works with our developmental

environment.

In Loop’s method new vertices, which are shown as black dots in Figure 9(b), are inserted

at the midpoint of each element edge of a given control mesh. The vertices are then

connected, dividing an initial triangular element into four smaller triangles. The positions of

the vertices are then adjusted by taking the weighted average of the positions of

neighboring nodes. Each iteration of this subdivision process creates a smoother mesh

and further refines the shape of the stone.

5.2.2 Paving stone shape

 Two paving stone shapes are accommodated in our method: cobblestone and flagstone.

The choice of stone shape is determined by the initial stone mesh.

 A cobblestone is created by the initial stone meshes shown in Figure 10. Figure 10(a)

shows an aerial view of the mesh, and Figure 10(b) shows the connectivity of the vertices

from the top view.

 A flagstone is generated by adding new vertices around each corner of a cobblestone’s

mesh, as shown in Figure 11. Here, the gray vertices are new. Their positions are

calculated from specified horizontal and vertical bevel ratios that give horizontal and vertical

distances from a corner. The distance is given by Equation (7):

BevelRatio
StoneSize

omCornerDistanceFr ×=
2

 (7)

5.3 Surface displacement

Figure 9

Figure 10

Figure 11

- 16 -

Finally, the generated stone shapes are displaced by means of a fractal noise function,

which creates surface bumps. Fractal noise is calculated by using a midpoint

displacement method that subdivides a given line segment into two halves and then moves

the midpoint vertically. This process is performed recursively [Four82]. In our method, a

two-dimensional grid is given, and fractal noise is generated by performing the above

subdivision process for each line segment of the grid. The amplitude and fractal dimension

of the fractal noise function can be adjusted to create various stone textures.

To displace a stone’s surface, a masking pattern is first generated by projecting the

stone’s shape vertically, as shown in Figure 12. The generated fractal noise data is clipped

by this mask and is then added to the stone’s height data, calculated by using a scan-line

method, and is stored in the bump data plane.

5.4 Attributes of a paving stone

 The color and optical attributes of a paving stone are initially set to a default color and

default optical attributes. These attributes are recorded in their respective data planes at

the same time that the stone’s height data is placed on the bump plane, as shown in Figure

12. The masking pattern described in Section 5.3 is also used to locate the attribute data.

We assume that the attribute data set is specified by the user in advance, and it is assigned

uniquely to each stone by a random number.

6. Results

 This section shows some pavement textures generated by the proposed method. In all

the examples, the image size is 512 x 512.

Parameters

The following parameters for each of the examples are listed in Table 1.

Cs: Average cell (stone) size

Table 1

Figure 12

- 17 -

Vs: Variance of cell (stone) size

Hs: Height of stone

Sv: Scaling value of cell (stone) base

Dr: Distortion ratio of basic stone mesh (0.0 < Dr < 1.0)

Fd: Fractal dimension of fractal noise controlling stone’s surface roughness

(1.0 < Fd < 2.0)

Af: Amplitude of fractal noise

Bh: Horizontal bevel ratio for flagstone (0.0 < Bh < 1.0)

Bv: Vertical bevel ratio for flagstone (0.0 < Bv < 1.0)

Processing time

The processing time depends on the number of paving stones generated. On average, it

takes about five seconds for the square packing process and about ten seconds for the

stone texture generation on an Intel Pentium II 300 MHz processor for a texture size of 512

by 512.

Change in packing parameters

Figure 13 shows examples that are obtained by changing the packing parameters.

Figures 13 (1a), (2a), and (3a) are the generated packing patterns, and Figures 13 (1b),

(2b), and (3b) are the obtained pavement textures.

Assuming that Figure 13 (1b) is the average pavement texture, Figure 13 (2b) is

generated by setting a lower stone size parameter, and Figure 13 (3b) is obtained by raising

the variance parameter of stone size. In Figure 13 (3b), note that the sizes of the paving

stones vary widely.

Comparison of cobblestone and flagstone

Figure 14 shows a comparison of the two types of paving stones. From the packing

Figure 13

Figure 14

- 18 -

pattern shown in Figure 14 (a), cobblestone pavement (Figure 14 (b)) and flagstone

pavement (Figure 14 (c)) can be generated by controlling the initial stone mesh.

Change in deformation ratio

 Figure 15 shows examples that are created by changing the deformation ratio of the

stones’ shapes. Assuming that Figure 15 (a) is the average pavement texture, Figure 15

(b) is obtained by having no deformation (the deformation ratio is zero), and Figure 15 (c) is

generated by increasing the deformation ratio. In Figure 15 (b), note that most of the

paving stones have the same shape.

Various pavements

 Figure 16 shows various pavement textures such as holes, a fork, and cutouts.

7. Conclusion

We have outlined a method for generating a variety of pavement textures simply by

specifying a road shape and a few parameters. The packing pattern for a given road

shape is generated by means of the square packing technique. A pavement texture is then

obtained by generating shaped stone for each packing area.

In the future, we plan to work on the following areas:

Weathering

The pavement textures presented are pristine and immutable, even though real pavement

stones are not. Some papers discuss weathering, including the simulation of metallic

patinas [Dors96] and stone weathering effects [Dors99]. Apart from these natural

weathering effects, artificial weathering effects such as wear, abrasion and demolition are

also important factors in improving the reality of a computer-synthesized pavement texture

image.

Figure 15

Figure 16

- 19 -

Varied stone conditions

In our method, a stone’s shape is generated with a procedural approach. An interesting

consideration for future work is the generation of a paving stone texture from real sample

images and the simulation of various situations such as wet stones, moss-covered and dirty

stones.

Application to organic texture

As mentioned in Section 2.2.3, various cell packing models have been proposed, such as

circular cells [Shim93], elliptical cells [Shim97], and rectangular cells [Visw00]. These

packing techniques can be applied to represent many other objects including organic

textures such as reptile skin, scales, and tortoise shell.

- 20 -

REFERENCES

[Catm78] E. Catmull and J. Clark (1978), “Recursively generated B-spline surfaces on

arbitrary topological meshes,” Computer Aided Design, Vol.10, No.6; 350–355.

[Doo78] D. Doo and M. Sabin (1978), “Analysis of the behavior of recursive division

surfaces near extraordinary points,” Computer Aided Design, Vol.10, No.6; 356-360

[Dors96] J. Dorsey and P. Hanrahan (1996), “Modeling and rendering of metallic patinas,”

Proceedings of SIGGRAPH '96, 387–396.

[Dors99] J. Dorsey, et al (1999), “Modeling and Rendering of Weathered Stone,”

Proceedings of SIGGRAPH '99, 225-234.

[Flei95] K.W. Fleischer, et al (1995), “Cellular texture generation,” Proceedings of

SIGGRAPH ’95. 239-248

[Four82] A. Fournier, D. Fussell, and L. Carpenter (1982), “Computer rendering of

stochastic models,” Communications of the ACM, Vol. 25, No. 6, 371-384.

[Grün87] B. Grünbaum and G.C. Shephard (1987), Tiling and Patterns, W.H. Freeman and

Co., New York.

[Loop87] C. Loop (1987), “Smooth subdivision surfaces based on triangles,” Master’s thesis,

University of Utah, Department of Mathematics.

[Mehl99] K. Mehlhorn and S. Näher (1999), LEDA: a platform for combinatorial and

geometric computing, 686-707.

[Miya90] Kazunori Miyata (1990), “A method of generating stone wall patterns,”

Proceedings of SIGGRAPH '90, 387-394.

[Peit88] H-O. Peitgen, et al (1988), The Science of Fractal Image: “Chapter 1 – Fractals in

Nature,” Springer-Verlag, New York.

[Perl85] K. Perlin (1985), “An Image Synthesizer,” Proceedings of SIGGRAPH '85, 287-296.

[Shig76] Mirei Shigemori (1976), Garden: Approach to Gods, SeibundoShinko-sha, Japan.

[Shim93] K. Shimada (1993), “Physically-based Mesh Generation: Automated Triangulation

of Surfaces and Volumes via bubble Packing,” Ph.D. thesis, Massachusetts Institute of

- 21 -

Technology, Cambridge, MA, U.S.A.

[Shim95] K. Shimada and D.C. Gossard (1995), “Bubble Mesh: Automated Triangular

Meshing of Non-manifold Geometry by Sphere Packing,” Third Symposium on Solid

Modeling and Applications; 409-419.

[Shim97] K. Shimada, A. Yamada, and T. Itoh (1997), “Anisotropic Triangular Meshing of

Parametric Surfaces via Close Packing of Ellipsoidal Bubbles,” 6th International Meshing

Roundtable, 375-390.

[Shim98] K. Shimada, J. Liao, and T. Itoh (1998) “Quadrilateral Meshing with Directionality

Control through the Packing of Square Cells,” 7th International Meshing Roundtable;

61-76.

[Visw00] N. Viswanath, K. Shimada, and T. Itoh (2000), “Quadrilateral Meshing with

Anisotropy and Directionality Control via Close Packing of Rectangular Cells,” 9th

International Meshing Roundtable, to appear.

[Yess79] C.I. Yessios (1979), “Computer drafting of stones, wood, plant and ground

materials,” Computer Graphics, Vol.13, No.2, 190-198.

- 22 -

Figure 1 A collection of pavements

Figure 2 Process overview

- 23 -

Figure 3 Texture data structure

(a) Input domain and scalar field. (b) Input domain and vector field.

(c) Output square cells

Figure 4 Packing of square cells

- 24 -

Figure 5 Calculation of the directionality

(a) Potential field in a bubble mesh. (b) Potential field in square packing.

Figure 6 Potential fields

Figure 7 Stable position in packing cells

- 25 -

(a) Base sweeping (b) Shape deformation

Figure 8 Basic stone shape

 (a) Initial mesh (b) After subdivision

Figure 9 Loop’s subdivision method

- 26 -

(a) Aerial view (b) Top view

Figure 10 Triangular mesh for cobblestone

Figure 11 Triangular mesh for flagstone

Figure 12 Surface displacement and attributes

- 27 -

(1a) Packing Pattern #1 (1b) Pavement Texture #1

(2a) Packing Pattern #2 (2b) Pavement Texture #2

(3a) Packing Pattern #3 (3b) Pavement Texture #3

Figure 13 Change in packing parameters

- 28 -

(a) Packing pattern

(b) Cobblestone pavement (c) Flagstone pavement

Figure 14 Comparison of cobblestone and flagstone

- 29 -

(a) Average deformation (b) No deformation

(c) High deformation

Figure 15 Change in deformation ratio

- 30 -

(a) Example #1 (b) Example #2

(c) Example #3 (d) Example #4

(e) Example #5 (f) Example #6

Figure 16 Various pavement textures

- 31 -

Table 1 List of parameters

Fig. No Cs Vs Hs Sv Dr Fd Af Bh Bv

13(1b) 23 0.0 18 1.0 0.3 1.5 2.0 - -

13(2b) 18 0.1 18 1.0 0.3 1.5 2.0 - -

13(3b) 23 0.3 18 1.0 0.3 1.5 2.0 - -

14(b) 20 0.0 20 1.0 0.3 1.5 2.0 - -

14(c) 20 0.0 12 1.0 0.2 1.4 1.4 0.2 0.2

15(a) 23 0.0 20 1.1 0.0 1.5 2.0 - -

15(b) 23 0.0 20 1.1 0.3 1.5 2.0 - -

15(c) 23 0.0 20 1.1 0.6 1.5 2.0 - -

16(a) 21 0.0 18 1.0 0.3 1.5 2.0 - -

16(b) 25 0.0 20 1.0 0.5 1.5 2.0 - -

16(c) 15 0.0 8 1.0 0.2 1.3 1.0 0.2 0.2

16(d) 23 0.0 14 1.1 0.3 1.5 2.0 0.2 0.2

16(e) 20 0.0 12 1.0 0.2 1.3 1.2 0.2 0.2

16(f) 20 0.0 18 0.8 0.3 1.5 2.0 - -

- 32 -

LIST OF CAPTIONS

Figure 1 A collection of pavements

Figure 2 Process overview

Figure 3 Texture data structure

Figure 4 Packing of square cells

Figure 5 Calculation of the directionality

Figure 6 Potential fields

Figure 7 Stable position in packing cells

Figure 8 Basic stone shape

Figure 9 Loop’s subdivision method

Figure 10 Triangular mesh for cobblestone

Figure 11 Triangular mesh for flagstone

Figure 12 Surface displacement and attributes

Figure 13 Change in packing parameters

Figure 14 Comparison of cobblestone and flagstone

Figure 15 Change in deformation ratio

Figure 16 Various pavement textures

Table1 List of parameters

