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Abstract

Multi-dimensional data visualization is an important
research topic that has been receiving increasing atten-
tion. Several techniques that use parallel coordinate plots
have been proposed to represent all dimensions of data in
a single display space. In addition, several other tech-
niques that apply scatterplot matrices have been proposed
to represent multi-dimensional data as a collection of low-
dimensional data visualization spaces. Typically, when us-
ing the latter approach it is easier to understand relations
among particular dimensions, but it is often difficult to ob-
serve relations between dimensions separated into different
visualization spaces. This paper presents a framework for
displaying an arrangement of low-dimensional data visu-
alization spaces that are generated from high-dimensional
datasets. Our proposed technique first divides the dimen-
sions of the input datasets into groups of lower dimen-
sions based on their correlations or other relationships. If
the groups of lower dimensions can be visualized in inde-
pendent rectangular spaces, our technique packs the set
of low-dimensional data visualizations into a single dis-
play space. Because our technique places relevant low-
dimensions closer together in the display space, it is easier
to visually compare relevant sets of low-dimensional data
visualizations. In this paper, we describe in detail how we
implement our framework using parallel coordinate plots,
and present several results demonstrating its effectiveness.

1 Introduction

Multi-dimensional data visualization is an important
and active research field. According to survey papers in the
field, several techniques have been proposed [18, 6]. The
authors of [18] divided the available multi-dimensional
data visualization techniques into three categories: two-
variate displays, multivariate displays, and animation.

The typical two-variate display technique is the scatter-
plot. Because historically scatterplots have been widely
used and are currently implemented in commercial spread-

sheet software packages, they are particularly popular and
users are familiar with them. The scatterplot matrix,
which consists of multiple adjacent scatterplots, has also
been widely used to represent the dimensions of high-
dimensional datasets. Each scatterplot in a scatterplot ma-
trix is identified by its row and column index. Even though
ordinary users are familiar with scatterplot matrices, they
have two major drawbacks. First, if the number of dimen-
sions in a given dataset is very large, the individual scatter-
plots in a display space may be very small. Second, it is
difficult to visually compare arbitrary pairs of scatterplots
that are distantly placed in the display space.

Multivariate display techniques attempt to represent the
distribution of all the dimensions in a given dataset on a
single display space. Several multivariate display tech-
niques are available, including icon- and glyph-based tech-
niques, such as hierarchical axis [13], worlds within worlds
[4], and parallel coordinate plots [7]. Recently, the paral-
lel coordinate plots has been the subject of many studies
and is widely used. However, this technique has several
drawbacks. First, when the number of dimensions is very
large it may require a large horizontal display space. Sec-
ond, it is difficult to represent the correlation of a particular
dimension with three or more dimensions.

In this paper, we present a technique to represent high-
dimensional spaces using multiple low-dimensional vi-
sualization components. Our proposed technique over-
comes the drawbacks of both the two-variate and multi-
variate data visualization techniques. As mentioned above,
scatterplot-based techniques represent high-dimensional
spaces as collections of scatterplots. However, the draw-
back of these techniques is that when all pairs of di-
mensions are displayed equally, the individual scatter-
plots displayed may be very small. Conversely, our pro-
posed technique selectively displays meaningful sets of
low-dimensional visualization components. Our technique
first selects a pre-defined number of groups of dimensions



based on their correlations. Then, it defines the distances or
connectivity among the sets of dimensions. Next, it com-
putes the ideal positions of the sets of dimensions based
on their distance or connectivity values. Finally, it applies
a rectangle packing algorithm and places the set of low-
dimensional visualization components [8] [9] based on
their ideal positions. Consequently, our technique places
similarly looking low-dimensional visualization compo-
nents closer together in the display spaces. Conversely, our
proposed technique selectively displays meaningful sets of
low-dimensional visualization components.

2 Related Work
2.1 Parallel Coordinate Plots

The parallel coordinate plots [7] display high-
dimensional datasets as a set of polylines intersecting with
parallel axes. Specifically, the existence of parallel poly-
lines between two axes indicates positive correlation. Con-
versely, if several polylines cross the axes, it is indicative
of negative correlation. Improving the parallel coordinate
plots has been a very active research topic.

First, when coordinates are parallel, polylines may be-
come cluttered. Several techniques have attempted to im-
prove the readability of the results obtained by the paral-
lel coordinate plots technique by applying clustering tech-
niques or sampling the polylines [5] [10] [15] [20].

Second, the effectiveness of parallel coordinate plots
strongly depends on the order of the dimensions. Al-
though, various dimension ordering techniques have been
proposed [14] [19], it is still often difficult to represent all
correlations in one display space, especially when a par-
ticular dimension is strongly correlated with many other
dimensions. Actually, parallel coordinate plots represent
just a subset of all possible relationships between the di-
mensions.

Third, if the number of dimensions is very large, the
parallel coordinate plots technique may require a display
space that is horizontally large. This problem of paral-
lel coordinate plots can be solved if we divide the high-
dimensional data space into smaller meaningful subsets.
Several works have explored the idea of dividing high-
dimensional data spaces into multiple lower-dimensional
data spaces and representing them by a set of parallel co-
ordinate plots [1].

The technique presented in this paper addresses the sec-
ond and third problems presented above.

2.2 Rectangle Packing

Our proposed technique applies a rectangle packing al-
gorithm to visualize hierarchical data [8]. The rectangle
packing algorithm represents a hierarchy as nested rectan-
gles and leaf-nodes as painted icons. Moreover, it satisfies
the following conditions:

Condition 1: It never overlaps the leaf-nodes and branch-
nodes in a single hierarchy of other nodes.

Condition 2: It attempts to minimize the display area.

Condition 3: It attempts to minimize the aspect ratio and
area of the rectangular subspaces.

Condition 4: It attempts to minimize the distances be-
tween the actual and ideal positions of the rectangu-
lar subspaces (when the ideal positions of the rect-
angular subspaces are provided).

First, the rectangle-packing algorithm specifies the order
of the placement of rectangles. Then, it identifies several
candidate positions that satisfy condition 1, for placing a
rectangle. Next, for each candidate position, it computes
penalty values, which represent to what extent each posi-
tion satisfies conditions 2, 3, and 4, respectively. Finally, it
places the rectangle at the best candidate position.

This rectangle packing algorithm has also been applied
to a graph visualization technique [9]. The technique
first applies hierarchical clustering to a given graph, and
generates clusters of nodes based on both their assigned
categories and connectivity. Then, it visualizes the hi-
erarchy by applying a hybrid force-directed and space-
filling layout. The force-directed layout minimizes dis-
tances between connected or similarly categorized nodes.
Conversely, the space-filling layout applies the rectangle-
packing algorithm to minimize the cluttering of nodes and
maximize the utility of the display. Hence, the hybrid lay-
out for graph visualization realizes simultaneously both
features.

3 Framework of Low-dimensional Data Vi-
sualization Packing

In this section, we define the input datasets and out-

puts, and briefly describe the processing flow of the low-

dimensional data visualization packing approach.
3.1 Data structure

In this paper, an n-dimensional input dataset Ds is de-
fined as follows:

Ds ={z1,...,zN}, (1)

where x; is the i-th plot, and N is the number of plots, as
shown in Figure 1(Left)(1). As shown in Figure 1(Left)(2),
our technique first divides the n dimensions into the fol-
lowing groups:

Gp =191, 96}, 2
gi = {di1, -, dic; }, (3)
where g; is the i-th group of the dimensions, G is the num-

ber of groups, d;; is the j-th dimension of g;, and G is the
number of dimensions included in g;. Figure 1(Left)(3)



illustrates how our proposed technique displays a set of
low-dimensional datasets Dp; to Dp¢, where Dp; is a G-
dimensional dataset containing N plots, x; to x, with a
set of dimensions g;.

3.2 Processing flow

Our proposed technique first divides the high-
dimensional input dataset into a set of low-dimensional
datasets. Let S; = {z{7,...,2%} be a set of scalar values,
where a:?i is the value of the ¢-th dimension of the j-th plot.
Our technique compares arbitrary pairs of values S; and
S;, and if they are similar or correlative, categorizes the 4-
th and j-th dimensions into the same group. Next, it com-
putes the similarities or distances between arbitrary pairs
of values of the low-dimensional datasets Dp; and Dp;.
Finally, it calculates the positions of the low-dimensional
datasets and places similar ones closer together in the dis-
play space. The complete process is illustrated in Figure
L(Left)(4).

Our technique first calculates the ideal positions of the
low-dimensional visualization components, and then ap-
plies the rectangle packing algorithm to adjust their po-
sitions. This two-step technique satisfies the following
requirements: (1) it places similar low-dimensional visu-
alizations closer together in the display space, and (2) it
avoids overlaps, thus reducing wasted space in the display
regions.

Our current implementation of computing ideal posi-
tions supports the following two methods:

e Dimension reduction based on the similarity dis-
tances between low-dimensional visualization com-
ponents.

e Graph layout, where low-dimensional visualization
components are connected based on their similarity
measures.

In the following two sections, we describe in detail
how we implement our technique using parallel coordinate
plots.

4 TImplementation as a Set of Parallel Coor-
dinate Plots

In this section, we present the details of implement-
ing high-dimensional data visualization by packing a set of
parallel coordinate plots. First, we select a group of dimen-
sions to be displayed by parallel coordinate plots. Next, we
compute their ideal positions based on their correlations.
Finally, we apply the rectangle packing algorithm and ad-
just their positions.

In the following sub-sections, we describe in detail the
processing flow of our implementation.

4.1 Construction of Parallel Coordinate Plots

First, our implementation generates groups of dimen-
sions based on conditional independence, and specifies the
order of the dimensions.

4.1.1 Determination of conditional independence

To visualize high-dimensional datasets as groups of paral-
lel coordinate plots, we impose the following requirements
on the algorithm used to group dimensions:

e Highly-correlated dimensions are displayed in the
same parallel coordinate plots.

e Poorly-correlated dimensions are displayed in differ-
ent parallel coordinate plots.

This implementation applies “conditional independence”
to properly group the dimensions.

Conditional independence is determined among three
disjoint subsets of dimensions [Remark 1] A, B and C (A,
B, C € {di,...,d,}). Specifically, we compute the mu-
tual information I (A, B|C), where A and B is an arbitrary
pair of dimensions, and C is a given dimension. Given
C, A and B are conditionally independent if I(A, B|C) is
close to zero.

Using the computed conditional independence values
between arbitrary pairs of dimensions, we group the di-
mensions such that conditionally independent dimensions
are categorized into different groups [2]. For example, let
{d1,dz,d3,ds} be four dimensions, where I(d;,ds|ds) =
0, and I(dz,d4|d3) = 0. In this case, we can condition-
ally connect non-independent pairs of dimensions and con-
struct a graph consisting of two creeks, {d;,d»,ds} and
{ds,d4}. This technique treats creeks as groups of dimen-
sions, and visualizes groups as low-dimensional parallel
coordinate plots, as shown in Figure 1(Right)(1).

In general, the problem if identifying the most likely
(MLE) structure of conditional independence among vari-
ables is NP-complete [11]. However, under a weak as-
sumption (fixed-width of the tree induced by the esti-
mated conditional independence structure), we can use a
polynomial-time algorithm based on the sub-modularity
in conditional mutual information, which guarantees PAC
(probably approximately correct) solutions (instead of
MLE) [2].

4.1.2 Dimension reordering for parallel coordinate
plots

In our current implementation, we use a greedy algorithm
to specify the order of dimensions. Typically, it is prefer-
able to draw strongly correlated dimensions in adjacent



parallel coordinate plots. First, we compute the correla-
tions of all possible pairs of dimensions and select the most
correlated pair as the two dimensions drawn at the left end
of the parallel coordinate plots. This process is repeated to
select which dimensions to place to the right of the most
recently placed dimensions.

This implementation can be improved by applying the
existing dimension reordering algorithms. For example,
Zhang et al. presented a dimension reordering algorithm
that applies the traveling salesman problem to dimension
graphs [19].

4.2 Placement of Parallel Coordinate plots

In the latter part of our proposed technique, we place
the set of parallel coordinate plots onto the display space.
First, we compute the ideal positions of the parallel coordi-
nate plots on the display space based on their correlations.

4.2.1 Dimension reduction for computing ideal posi-
tions

We compute the ideal positions of the parallel coordinate
plots by applying a dimension-reduction scheme. Let g;
and g; be the two groups of dimensions to be displayed as
parallel coordinate plots, where g; = {d;1,...,d;g, } and
G; is the number of dimensions in g;.

The similarity distances between the two groups g; and
g; are computed as follows:

1

919,12 R,
Here, Ry, ,, is the correlation coefficient between g; and
g;» computed using the following equation:
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where G; and G are the number of dimensions in g; and
g; respectively, and d;, is the a-th dimension of g;.

Next, we compute D(g;, g;) for all possible pairs of
groups of dimension and generate their distance matrix, as
shown in Figure 1(Right)(2).

Finally, we apply a dimension reduction scheme (e.g.,
Isomap) to the distance matrix, and treat the first and sec-

ond dimensions of each dimension groups as the ideal po-
sitions of the parallel coordinate plots on the display space.

D(gi,g;) =1 “)

4.2.2 Graph layout for computing ideal positions

Instead of generating a distance matrix, when D(g;, g;) is
sufficiently small we generate a graph structure by con-
necting pairs of dimension groups g; and g;. Next, we ap-
ply a force-directed graph layout technique and compute
the two dimensional positions of the parallel coordinate
plots.

4.2.3 Rectangle packing

After computing the ideal positions of the parallel coordi-
nate plots by selectively applying dimension reduction or
graph layout techniques, as shown in Figure 1(Right)(3),
we calculate the final positions of the parallel coordinate
plots by applying a rectangle packing algorithm, as shown
in Figure 1(Right)(4).

S Example

In this section, we present examples of visualizing
datasets using our technique described above. We imple-
mented in Python 2.7 the parallel coordinate plots con-
struction (Section 4.1), and dimension reduction (Sec-
tions 4.2.1) algorithms. Moreover, we implemented the
force-directed layout (Sections 4.2.2) and rectangle pack-
ing (Sections 4.2.3) algorithms using the Java Develop-
ment Kit (JDK) 1.6.0.

In our experiments, we observed large differences in
the quality and computation time between approaches us-
ing dimension reduction and force-directed graph layout.
Dimension reduction required approximately ten minutes
of computation time, while force-directed graph layout re-
quired only several seconds. Conversely, the visualization
quality using dimension reduction was subjectively much
better.

In the next sub-section, we present visualization results
obtained using dimension reduction.

5.1 Example 1: Image segmentation data

In this sub-section, we present the visualization results
obtained by applying our technique to the "Segmentation”
dataset published at the UCI machine learning repository
[21]. This dataset contains 18 feature values for 210 blocks
of images, generated by dividing each of 7 images into
30 blocks. We treated images as classes, feature values
as dimensions, and blocks as polylines. Hence, the 18-
dimensional dataset is displayed as 210 plots in 7 colors.

In Figure 2(Left), we present 20 parallel coordinate
plots resulting from our experiment. Here, we draw the
values for only two images as yellow and light green poly-
lines. Moreover, in Figure 2(Right), we show a close-up
view of 2 parallel coordinate plots in the visualization re-
sults. Integer values indicated below the axes of the figures
are the IDS of the dimensions of the dataset.

These results indicate that dimension 9 is correlated
with many other dimensions, including strong positive cor-
relations with dimensions 10, 12, 16, and weak negative
correlations with dimensions 7 and 8. Here, the meanings
of the dimension IDs indicated in this example are as fol-
lows:

7: Average of the contrast of vertically adjacent pixels.
Used for horizontal line detection.
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Figure 2: (Left) Visualization of an image segmentation dataset as 20 parallel coordinate plots. (Right) Visualization of an image

segmentation dataset by a set of parallel coordinate plots components.

8: Standard deviation of the contrast of vertically adjacent
pixels. Used for horizontal line detection.

9: Average over the region of (R + G + B)/3.
10: Average over the region of the R value.
12: Average over the region of the G value.

16: 3D nonlinear transformation of the RGB values using
the algorithm of Foley and VanDam.

This type of correlation with multiple dimensions may be
lost if we visualize the dataset using a single pair of parallel
coordinate plots. However, our technique can adequately
represent all correlations.
5.2 Example 2: Vehicle specification data

In this sub-section, we present visualization results ob-
tained by applying our approach to a vehicle specification
dataset constructed from websites containing on-line ve-
hicle catalogs [22]. This dataset contains 70 feature val-

ues and various classes for 429 vehicles. Hence, the 70-
dimensional dataset is displayed as 429 plots colored based
on user-selected classes. Here, the feature values include
sales-related values such as price, performance-related val-
ues such as displacement and fuel efficiency, and size-
related values such as width and length. In addition, this
dataset contains various average values of 5-point subjec-
tive user evaluations, including appearance, equipment, in-
terior, engine power, cost performance, and the total.

In Figure 3(Left), we present an example of the visual-
ization results . Here, the colors of polylines denote the
countries of vehicle manufacturers, where yellow corre-
sponds to France, blue corresponds to Germany, cyan cor-
responds to Japan, red corresponds to Sweden, and green
corresponds to the USA. This result demonstrates that our
technique extracts various meaningful subsets of correlated
dimensions.

In Figure 3(Left), the dimensions of the parallel coordi-



Interior evaluation
Equipment evaluation

Figure 3: (Left) Visualization of a vehicle specification dataset by parallel coordinate plots components. Colors of polylines denote
countries of vehicle manufacturers. (Right) Visualization of a vehicle specification dataset by a single parallel coordinate plots compo-

nent.

nate enclosed be the rectangles indicated as (1) to (6) are
as follows:

(1): Price,” outer length,” and “cost performance evalu-
ation.” The left two dimensions have positive corre-
lation, while the right two dimensions have negative
correlation. Long cars are not evaluated highly in
this dataset.

(2): "Displacement” and “fuel efficiency,” which have
negative correlation. Actually, it is quite common for
vehicles with large displacement to have poor fuel
efficiency.

EEINE)

(3): “Equipment evaluation,” “interior evaluation,” and
“total evaluation,” which have positive correlation.
The plot suggests that the left two evaluations affect
strongly the total evaluation.

EEREE)

(4): “Interior evaluation,” “price,” and fuel efficiency.”
The left two dimensions have positive correlation,
while the right two dimensions have negative corre-
lation. In this dataset, vehicles with rich interiors or
poor fuel efficiency are expensive.

2 9.

(5): “Engine power evaluation,” “year,” and “equipment
evaluation.” Variable “year” has negative correla-
tions with the other two variables. This result, in-
dicating that newer vehicles had worse evaluations
was unexpected.

(6): “Light car” (or not: binary values), “engine power
evaluation,” and “coupe” (or not: binary value). En-
gine power evaluation has negative correlations with
the other two valuables.

In Figure 3(Right), we visualize the same dataset us-
ing a single parallel coordinate plots. When all 70 dimen-
sions are displayed in a single parallel coordinate plots, a

horizontally large display space is required. Moreover, it
is quite difficult to represent all correlations between ar-
bitrary pairs of dimensions in a single parallel coordinate
plots. In fact, displaying a dataset using a single paral-
lel coordinate plots does not have many of the abovemen-
tioned features. For example, it is difficult to identify the
correlation between “year” and “equipment evaluation,”
which is well represented in Figure 3(Left)(5). Similarly,
it is difficult to identify the correlation between “interior
evaluation” and “price,” which is also well represented in
Figure 3(Left)(4). This result demonstrates the advantage
of our technique over the single parallel coordinate plots.

6 Conclusion

In this paper, we presented a technique for visualiz-
ing high-dimensional data as a set of well-selected and
arranged low-dimensional data visualization components.
Our technique selects meaningful groups of dimensions
and visualizes them using parallel coordinate plots. Then,
it computes the similarity between arbitrary pairs of di-
mension groups. Next, it computes the ideal positions of
dimension groups based on their similarity distances. Fi-
nally, it adjusts the final positions of the parallel coordi-
nate plots. We presented examples of applying our pro-
posed technique to visualize image segmentation and vehi-
cle specification datasets.

Our technique can represent various pairs or groups of
correlated dimensions in the high-dimensional data spaces.
However, it is not easy for users to discover dimensions
that are “unexpectedly independent.” In the example of the
vehicle specification dataset, we expected that “displace-
ment” and “fuel efficiency” are correlated with “engine
power evaluation.” However, results show that these di-
mensions are not well correlated. Moreover, the fact that
these dimensions are not well correlated is not clearly rep-



resented in our visualization results. In future work, we
will explore techniques that will enable users to discover
such unexpectedly independent dimensions without any
hassle.

Moreover, we would like to perform additional exper-
iments in various applications. Specifically, we would
like to apply our technique to larger datasets containing
hundreds of dimensions and tens of thousands of plots to
demonstrate its scalability. In addition, we would like to
apply our technique to various fields of datasets to demon-
strate its usability as a generic visual analytics tool.

Finally, we would like to numerically and subjectively
evaluate our technique.
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