
IGEL: A Virtual Heat Cutter for 3D Shape Modeling

Hitomi Imaizumi∗

Ochanomizu University
Takayuki Itoh†

Ochanomizu University

Abstract

Heat cutter is a tool for processing styrene forms. Since blades of
cutters are steal wires, user can freely bend them. We think this op-
eration is intuitive for 3D shape modeling. IGEL virtually realizes
the operation of the heat cutters by a sketch input system. IGEL has
two different modes, 2D and 3D modes, and users can switch them
freely. In 2D mode, users can draw the shapes of cutters freely.
In 3D mode, users can cut the styrene forms using their own cut-
ters. Our implementation represents the styrene forms as triangular
meshes, and cuts the meshes according to the user’s operation.

Keywords: 3D Modeling, Virtual Mockup, Heat Cutter.

1 Introduction

3D Computer Graphics is a very important technology for various
entertainment fields, such as movie and video games. 3D shape
modeling is an important technical step for computer graphics.
Most of 3D computer graphics designers use professional shape
modeling software, but many of them feel that such software may
be difficult for novice users, because it is not very intuitive, and
may require special knowledge and training. Today we enjoy var-
ious consumer-generated contents on the Web, such as movies up-
loaded onto video-sharing Web sites. However, we do not have
many chances to enjoy consumer-generated 3D contents. We think
one of the reasons is the difficulty of 3D shape modeling environ-
ments.

On the other hand, there have been many techniques for intuitively
enjoying 3D shape modeling processes. Some of famous tech-
niques applied sketch interfaces [Igarashi et al. 1999] [Karpenko
and Hughes 2006] [Cherlin et al. 2005] [Ijiri et al. 2005], and some
others mimicked real manufacturing processes such as cutting and
engraving [Mizuno et al. 1999] [Mitani and Suzuki 2004] [Owada
et al. 2004]. We think such kinds of enjoyable techniques may bring
us motivation of 3D shape modeling for non-professional people.
Also, such technique may contribute to reduce design duration and
costs for professional users. The technique presented in this paper
is also categorized to such kind of techniques.

This paper proposes IGEL, a virtual heat cutter for 3D shape mod-
eling applying a sketch interface. Our study supposes the following
conditions during the development of IGEL:

• We attempt to implement all the functions by intuitive oper-
ations of pointing devices, without selection of menu or key-
board operations.

• We attempt to mimics real manufacturing operations such as
cutting or engraving.

∗e-mail: hitomi@itolab.is.ocha.ac.jp
†e-mail:itot@is.ocha.ac.jp

• We do not suppose to use high-spec input devices or graphics
systems.

• We do not suppose highly accurate modeling such as design
of industrial products. Instead, we aim to satisfy high-level
hobby users.

Figure 1 shows a snapshot of a heat cutter, which features an
electrically-heated steal wire to process styrene forms. IGEL mim-
ics the heat cutters to process 3D shapes. It supposes that users de-
sign both shapes of steal wires and its trajectory by using a sketch
interface. Users can freely cut and process the initial shapes of vir-
tual styrene forms, by firstly designing the shape of the virtual steal
wire, and then moving it in a virtual 3D space. We think the process
is enjoyable since we can design the shapes of the cutter: we can
generate wave-shaped cross-sections by designing wave-like cutters
or star-shaped holes by designing star-like cutters. IGEL enables
such kinds of enjoyable shape modeling intuitively, by only several
stroke inputs.

Figure 1: A heat cutter.

We implemented IGEL without supposing high-spec input devices:
we only used a mouse or a pen tablet to implement and test IGEL.
Also, we implemented virtual styrene forms as simple triangular
meshes, not volume or point models, because we did not suppose to
use high-spec graphics system. We named this technique ”IGEL” as
an abbreviation of ”Interactive Graphics Enabling Light-modeling”.
Remark that ”igel” means a hedgehog in German. We likened the
cutters in our system to stings of a hedgehog.

2 Related Work

Sketch-based 3D shape modeling is an active research topic
[Igarashi et al. 1999] [Karpenko and Hughes 2006] to realize easy
and friendly 3D shape modeling environments. These techniques



enable easy operations based on 3D shape generation from 2D
shape inputs. However, most of the techniques automatically de-
cide the geometric features in the depth direction. This limitation
may sometimes make sophisticated 3D shape modeling more dif-
ficult using such techniques. We think it is a trade-off between
easiness and sophistication of 3D shape modeling.

Recent sketch-based 3D shape modeling techniques attempt to
strike a good balance between the easiness and sophistication.
Combination of parametric surface modeling and sketch interface is
a good solution to balance them [Cherlin et al. 2005]. Also, several
excellent 3D shape modeling tools for specific objects (e.g. flowers
[Ijiri et al. 2005] ) have been presented.

On the other hand, several intuitive 3D shape modeling techniques
mimic real manufacturing processes and construct virtual tools as
software. Virtual sculpture [Mizuno et al. 1999] and paper crafts
[Mitani and Suzuki 2004] are typical examples of such kind of the
works. These techniques are not only intuitive but also enjoyable
because it realizes virtual experiences of real manufacturing pro-
cesses. We think this is one of the values of virtual tool techniques.

IGEL is also a kind of virtual tools mimicking a heat cutter, fea-
turing a sketch interface. Owada et al. presented a similar work
[Owada et al. 2004] which cuts virtual objects by one stroke using
a sketch interface, and maps natural-looking texture images onto
the cross-section. Against this work, IGEL realizes more flexible
shape modeling featuring two kinds of sketch interface: inputs of
shapes and trajectory of cutters.

3 Processing Flow of IGEL

As mentioned in Section 1, IGEL mimics a heat cutter. It is not
easy to freely deform the wires of real heat cutters due to these
strengths. On the other hand, we implemented a sketch interface
to freely deform it in our virtual heat cutter, so that we can flexibly
and enjoyably realize 3D shape modeling.

3.1 Technical Overview

IGEL provides the following two modes to enable 3D shape mod-
eling, as shown in Figure 2:

2D mode: a sketch interface to input the shapes of cutters.

3D mode: another sketch interface to input the trajectory of the
cutters.

We did not suppose high-spec input devices while the development
of IGEL, and therefore we implemented the both modes only with
drag operations of popular pointing devices (mouse or pen tablet).

Also, we did not suppose high-spec graphics systems including
GPU while the development, and therefore we implemented IGEL
by only linking OpenGL and its extensions, without using GPU-
based languages or video game development kits. Consequently,
we applied simple triangular polygon models, not volumetric or
point models, as shape representation of the objects.

These assumptions are just based on our design policy. We do not
opposite to implement IGEL-like techniques applying volumetric
or point models, and using high-spec input devices or graphics sys-
tems.

3.2 2D mode

IGEL provides a 2D sketch interface to design the shapes of virtual
cutters, as shown in Figure 2 (Upper). It displays the trajectory of

Figure 2: (Upper) 2D mode for designing the shapes of cutters.
(Lower) 3D mode for inputing the trajectory of the cutters.

the cursor representing the shape of the virtual cutter, when a user
drags a pointing device.

IGEL interpolates the curved trajectory into a polygonal line, as
shown in Figure 3. This algorithm is similar to well-known vec-
torization algorithms of raster images. Our implementation first
generates a segment I1 connecting the start point v1 and end point
v2 of the trajectory. It then finds the point v3 where is on the tra-
jectory and the distance to I1 is maximum, and divide I1 into I2
and I3, as shown in Figure 3(1)(2). Our implementation recursively
repeats the division of the segments Ij until the maximum distance
between the segments and trajectory gets smaller than the prede-
fined threshold, as shown in Figure 3(3). Figure 3(4) shows an
example of the polygonal line interpolating the original shape of
the virtual cutter. The algorithm drastically reduces the number of
vertices constructing the curve of the virtual cutter, so that we can
reduce the computation time for cutting the virtual objects.

Here, we can cancel the shape by drawing again, if we do not prefer
already drawn shape.

Figure 3: Interpolation of shape of virtual wire into a polygonal
line.



3.3 3D mode

IGEL provides another sketch interface to input the trajectory of
virtual cutters, as shown in Figure 2(Lower). IGEL enables it when
a user finishes the input of the shape of the cutter and switches to
the 3D mode. It displays the cutter in the 3D space in a different
color when the user starts the dragging operation. It then calculates
the intersection between a virtual object and the trajectory of the
cutter according to the dragging operation. When a user finishes
the dragging operation in the 3D mode, IGEL cuts the virtual ob-
ject as mentioned below. Here, current our implementation only
supports translation on a projection plane to operate the cutter in
the 3D space.

3.3.1 Cross-Section Mesh

IGEL realizes the cutting operation by calculating the intersection
between a virtual object and the curved surface generated as the
trajectory of the virtual cutter. This paper defines a triangular mesh
that interpolates the curved surface as ”cross-section mesh”. Our
implementation generates the cross-section mesh while a user in-
puts the stroke, and completes when the user finishes the input oper-
ation. Figure 4 illustrates the generation of the cross-section mesh.
It evenly generates a series of vertices on the trajectory, indicated
as ”sampling line 1” or ”sampling line 2” in Figure 4. It then com-
pletes the generation of the cross-section mesh by connecting the
vertices.

Figure 4: Generation of cross-section mesh.

3.3.2 Mesh-Mesh Intersection

IGEL calculates intersection between the cross-section mesh and
the mesh of a virtual object. Figure 5 illustrates the process, where
pink triangles are parts of the virtual object, and sky-blue trian-
gles are parts of the cross-section mesh. The process detects in-
tersections between a triangle of a mesh and an edge of another
mesh. Traversing adjacent triangles one-by-one, and detecting the
intersections of the traversed triangles, the process generates a set
of segments connecting the intersections, shown as red arrows in
Figure 5. This paper defines the intersection as ”mesh-mesh in-
tersection”. Current our implementation completes the traverse of
triangles when it arrives at the first triangle and therefore the set
of segments constructs a loop. The current implementation does
not support the generation of multiple loops yet. Also, it does not
support the stop of cutting before constructing a closed loop, to
generate incisions.

3.3.3 Mesh Division

IGEL divides the triangles so that we can cut the virtual objects,
when the mesh-mesh intersection process is completed. IGEL

Figure 5: Generation of mesh-mesh intersection.

treats the segments constructing the mesh-mesh intersection as con-
straints, and applies the incremental constraint Delaunay triangula-
tion algorithm [Sloan 1987] to adequately divide the triangles.

Our implementation of the mesh division consists of two steps. The
first step divides the triangles by adding the new vertices on the
mesh-mesh intersection. The second step modifies the triangles
based on the constraints of the segments on the mesh-mesh inter-
section.

Figure 6 illustrates the division of triangles in the first step. The
algorithm adds new vertices on the mesh-mesh intersection to the
mesh, and divides the triangles so that the added vertices are ade-
quately connected. A red point enclosed by a pink triangle, shown
in Figure 6(1), is an example of the added triangle. The algorithm
firstly divides the triangle enclosing the added vertex, as shown in
Figure 6(2). It then checks the geometry of the divided triangles
with its adjacent triangles, painted in yellow in Figure 6(3). It then
swaps some edges of the triangles, if the geometry of triangles is
improved by the swapping. Sky-blue triangles in Figure 6(4) are
examples of the triangles generated by the edge swapping. The
process adequately divides the triangles by recursively repeating
the above process.

Figure 6: Division of triangles.

Figure 7 illustrates the swapping of triangles in the second step.
Here, a blue dotted segment in Figure 7(1) is an example of the
constraints. Our implementation extracts the four triangles inter-
sected by the constraint segment, and swaps two of the triangles if
the number of intersected triangles is reduced by the swapping. In
this example, swapping of two triangles painted in Figure 7(2) does
not reduce the number of intersected triangles, but swapping of two
triangles painted in Figure 7(3) reduces it. Figure 7(4) shows after



swapping of triangles painted in Figure 7(3), where the number of
intersected triangles gets three. By swapping the painted triangles
in Figure 7(4), the number gets two, as shown in Figure 7(5). Fi-
nally, the number gets zero, by swapping the painted triangles in
Figure 7(5). Figure 7(6) is the final result of the process.

Figure 7: Division of triangles.

IGEL applies the process to both virtual object mesh and cross-
section mesh. Here, a part of the cross-section mesh enclosed by
the mesh-mesh intersection can be reused as the cross-section of
the virtual object mesh.

3.3.4 Remaining Part Selection

When a mesh division process is completed, IGEL displays the two
parts of the virtual object mesh divided by the cross-section mesh in
two colors, as shown in Figure 8(Left). Users can click either of the
two parts to specify the remaining part. When a user specifies the
remaining part, IGEL maps the part of the cross-section mesh en-
closed by the mesh-mesh intersection into the virtual object mesh.
As a result, IGEL generates the new shape of the virtual object, as
shown in Figure 8(Right).

After completing the remaining part selection, users can cut the
virtual object by the same virtual cutter. Or, they can return to 2D
mode to design a different shape of cutter.

Figure 8: Selection of remaining part.

3.4 User Interface

Current our implementation uses GLUI, as an extension of
OpenGL, for implementation of graphical user interface of viewing
operations. The implementation provides gadgets for rotation and
translation of virtual objects and viewpoints. The implementation
still needs some keyboard-based operations such as switch between
2D or 3D modes. However, we would like to improve the user in-
terface so that we can operate IGEL only by pointing devices.

3.5 Example

Figure 9 shows an example of shape modeling by cutting a virtual
object five times.

Figure 9: An example.

4 Conclusion and Future Work

The paper presented IGEL, a virtual heat cutter for 3D shape mod-
eling. It provides two modes of the sketch interface. One of the
modes enables to design the shapes of the virtual cutters, and the
other enables to manipulate the cutters.

The following are our on-going and future works for the extension
and improvement of IGEL.

[Extension of cutting operations] As described in Section 3.3.2,
current our implementation does not support the situation that
mesh-mesh intersection forms multiple loops. However, it is nat-
ural that we generate multiple loops while cutting bumpy objects.
We would like to extend our implementation so that we can cut mul-
tiple parts in one stroke. Also, we would like to support the stop of



the virtual cutter before the mesh-mesh intersection constructs a
loop, so that we can generate incisions in virtual objects.

[Hole generation] Current our implementation does not support
generation of holes. We need to extend our implementation so that
it can recognize two loops of mesh-mesh intersection are topologi-
cally connected and they form a hole. We would like to implement
it because generation of holes is an important operation for virtual
heat cutters.

[Non-cutting operations] Current our algorithm does not take the
effect of heat into account. Therefore, it does not support melt of
objects. We would like to implement such effect to mimic more real
heat cutters.

[Evaluation] We have not had any evaluation with IGEL. We plan
two kinds of evaluations at this moment. Firstly we would like
to compare IGEL with existing shape modeling tools or real heat
cutters. Secondly we would like to user evaluation with examinees.

[Discussion on input devices] Current our algorithm does not sup-
port translation of cutters along depth direction, and rotation of cut-
ters. It is hard to implement while we limit the input devices to
mouse or pen tablet. We would like to discuss what kind of pointing
devices are preferable for IGEL. Also, we would like to test IGEL
with haptic pointing devices, because we think force feedback of
such devices are effective for users.

[Test with virtual reality technology] Display of objects and cut-
ters is also an important point for intuitive shape modeling. We
would like to test IGEL with virtual reality technologies, such as
large or stereoscopic displays.

References

CHERLIN, J. J., SAMAVATI, F., SOUSA, M. C., AND JORGE, J. A.
2005. Sketch-based modeling with few strokes. In Proceedings
of the 21st Spring Conference on Computer Graphics, 137–145.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3d freedom design. In Proceedings of
ACM SIGGRAPH 99, ACM Press / ACM SIGGRAPH, 409–416.

IJIRI, T., OWADA, S., OKABE, M., AND IGARASHI, T. 2005.
Floral diagrams and inflorescences: Interactive flower modeling
using botanical structural constraints. In Proceedings of ACM
SIGGRAPH 2005, ACM Press / ACM SIGGRAPH, 720–726.

KARPENKO, O. A., AND HUGHES, J. F. 2006. Smoothsketch:
3d free-form shapes from complex sketches. In Proceedings of
ACM SIGGRAPH 2006, ACM Press / ACM SIGGRAPH, 589–
598.

MITANI, J., AND SUZUKI, H. 2004. Making papercraft toys from
meshes using strip-based approximate unfolding. In Proceed-
ings of ACM SIGGRAPH 2004, ACM Press / ACM SIGGRAPH,
259–263.

MIZUNO, S., OKADA, M., AND TORIWAKI, J. 1999. An interac-
tive designing system with virtual sculpting and virtual woodcut
printing. Computer Graphics Forum: Journal of the European
Association for Computer Graphics 18, 3, 183–193.

OWADA, S., NIELSEN, F., OKABE, M., AND IGARASHI, T. 2004.
Volumetric illustration: Designing 3d models with internal tex-
tures. In Proceedings of ACM SIGGRAPH 2004, ACM Press /
ACM SIGGRAPH, 322–328.

SLOAN, S. W. 1987. A fast algorithm for constructing delaunay
triangulations in the plane. Advances in Engineering Software 9,
1, 34–55.


