
A Hybrid Space-Filling and Force-Directed Layout Method
for Visualizing Multiple-Category Graphs

Takayuki Itoh∗
Ochanomizu University

Chris Muelder†

University of California, Davis
Kwan-Liu Ma‡

University of California, Davis
Jun Sese§

Ochanomizu University

ABSTRACT

Many graphs used in real-world applications consist of nodes be-
longing to more than one category. We call such graph ”multiple-
category graphs”. Social networks are typical examples of multiple-
category graphs: nodes are persons, links are friendships, and cate-
gories are communities that the persons belong to. It is often helpful
to visualize both connectivity and categories of the graphs simulta-
neously. In this paper, we present a new visualization technique for
multiple-category graphs. The technique firstly constructs hierar-
chical clusters of the nodes based on both connectivity and cate-
gories. It then places the nodes by a new hybrid space-filling and
force-directed layout algorithm to clearly display both connectivity
and category information. We show layout results using our hybrid
method and compare it with other methods, and present a case study
using an active biological network dataset.

Keywords: Information visualization, graph visualization,
multiple-category graphs, clustering, force directed layout, space-
filling hierarchical data visualization, active biological network.

1 INTRODUCTION

In many real-world applications, graphs are used to represent rela-
tions between entities and one common task is to find hidden struc-
tures of the graph. When entities have too many associations, the
task becomes more difficult. For example, in a social context people
can belong to different communities, and they are connected to oth-
ers through their friends. In this case, the resulting social network
consists of a set of nodes corresponding to people, with multiple
categories corresponding to communities, and a set of links corre-
sponding to the friendship. Many researchers in social networks
are interested in the analysis of relationships between communities
and friendships. In this paper, we call graphs consisting of nodes
belonging to more than one category ”multiple-category graphs”.

Graphs or networks are widely used in various information vi-
sualization applications. For example, social network visualization
represents people as nodes, and gene visualization represents the
genes as nodes. Since nodes of general graphs do not have posi-
tional information, graph layout techniques are very important to
obtain readable visualization results. Force-directed layout [12] is
one of the most popular approaches for calculating the positions
of nodes. It is used in many applications because it can take edge
weights into consideration and generates appealing results. How-
ever, it is computationally expensive: computation time of tradi-
tional force-directed layouts may be proportional to the square of
the number of nodes in the worst cases. Treemap based meth-
ods [11] can more quickly layout the large graphs. The method
firstly hierarchically clusters of nodes based on their connectivity,
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and then places the nodes by Treemap [10]. In addition to its high
performance, it is useful for various graph analytics because the
method clearly represents clusters of the graphs.

If all nodes of a graph belong to only one category, a tree can be
constructed from the graph by simply grouping the nodes. In this
special case we can apply existing visualization techniques, which
firstly place the nodes base on the tree structure, and then draw
the connectivity between the nodes [7]. However, people usually
join multiple communities in their social life; therefore we cannot
generally assume that the nodes can construct a category-based tree.

We consider the following requirement for the visualization of
multiple-category graphs:

Requirement 1: Place nodes which belong to the common cate-
gories close each other, because users may want to observe
such nodes simultaneously.

We also consider the following general graph drawing require-
ments:

Requirement 2: Reduce the sum of lengths of edges, or number
of intersections among edges.

Requirement 3: Avoid the cluttering of nodes, because it may pre-
vent the clickability and readability.

Requirement 4: Maximize screen space utilization, because we
often want to look the whole data in a limited screen space.

Requirement 5: Reduce the computation time.

This paper presents a new technique for effectively visualizing
multiple-category graphs. The technique firstly applies hierarchical
clustering to a given graph, and generates clusters of nodes based
on both their categories and connectivity. It then visualizes the hi-
erarchy by applying space-filling layout, as existing Treemap based
work does [11]. During the process, our new technique applies hy-
brid space-filling and force-directed layout so that it can satisfy the
above requirements. Force-directed layout is good at requirements
1 and 2, because it flexibly stabilize the distances of nodes. On the
other hand, space-filling layout is good at requirements 3, 4, and
5. Our hybrid layout demonstrates the features of the two layout
techniques so that it can satisfy the all above requirements.

This paper also presents an application of the technique for the
visualization of active biological networks [14]. The networks con-
sist of large number of genes connected based on known protein-
protein interactions, and the genes are categorized based on expres-
sion or repression conditions which can be used to extract densely
connected subnetworks. Section 5 of this paper shows that the pre-
sented technique can reveal interesting and important features of
the multiple-category active biological networks.

2 RELATED WORK

2.1 Force-Directed Graph Layout
The force-directed graph layout is one of the most popular graph
layout techniques. It assumes that edges of a graph have spring-like
forces attempting to keep stable lengths. In addition, the layout can



flexibly stabilize the distances of nodes by adjusting the weights
of edges. Many implementations attempt to minimize the sum of
energy of the edges by iterative calculation [12].

Force-directed layouts are preferred in many applications be-
cause they provide appropriate distances between pairs of con-
nected nodes. That layout’s drawback, however, is computation
time. It requires iterative calculations, and the worst case running
time is proportional to the square of number of nodes. To solve the
problem, many accelerated force-directed techniques have recently
been presented [6].

2.2 Graph Clustering

Graph clustering has many uses in the field of graph/network anal-
ysis. Many graph clustering techniques are based on agglomerative
clustering algorithms, which firstly treat each node as a separate
cluster and then progressively merge clusters. The fast modular-
ity community structure inference algorithm [5], which we apply in
the current implementation, is a recent technique based on an ag-
glomerative clustering algorithm. Alternatively, divisive clustering
algorithms firstly treat the entire graph as a cluster and then recur-
sively split the cluster into smaller clusters. The recently developed
k-SNAP [17] technique is an example of recursive split algorithms.

2.3 Space-Filling Hierarchy Layout

The space-filling hierarchy layout is one of the most common ap-
proaches for visualizing tree or hierarchical data. It features an all-
in-one visualization of lower-level data items in hierarchical data.
Treemap [10] is the most popular space-filling layout technique. It
recursively subdivides the display space into rectangular regions,
resembling nested bar charts. The Quantum Treemap [1] is one of
the most valuable variations of the Treemap because it represents
all leaf-nodes as equally sized and shaped icons.

We have also presented a space-filling hierarchy layout tech-
nique [8] [9], which is somewhat analogous to Treemap because
both techniques subdivide screen space into rectangular regions.
Unlike the various Treemap algorithms that distribute hierarchical
data by a top-down algorithm, our technique deals with data by
a bottom-up algorithm. Experiments described in [8] discuss the
trade-offs between Quantum Treemap and our Treemap-like tech-
nique. Our Treemap-like technique has a better aspect ratio of sub-
regions and better layout stability with similar hierarchical data,
while Quantum Treemap has better computation time and better
screen space utilization. In addition, our Treemap-like technique
has a unique feature called ”templates”, which describe ideal posi-
tions of data items on a screen space (as described in Section 5 of
the reference [8].) The technique presented in this paper applies the
templates for the hybrid force-directed and space-filling layout.

2.4 Hierarchy Based Graph Visualization

Hierarchically clustered graphs are an effective data structure for
information visualization because they are suitable for overview,
zoom, and filtering operations. Various techniques for hierarchical
graph visualization have been presented over the last ten years [13],
including two types of hierarchically clustered graphs. In many
cases hierarchy is defined independent of edges. For example, we
can treat Web pages of a Web site as a hierarchical graph if we sup-
pose nodes are Web papers and edges are hyperlinks between pairs
of Web pages. In this case, we may want to hierarchically clus-
ter the nodes based on domains or directories, independent of their
hyperlinks. On the other hand, we can also generate hierarchical
graphs from the results of connectivity-based graph clustering.

Bourqui et al. [3] presented a multi-resolution force-directed lay-
out technique. It applies the force-directed layout to the each level
of the data hierarchy and divides the screen space with a Voronoi-
based algorithm. It relates to the technique presented in this paper

because both techniques use a force-directed layout technique and
avoid overlapping clusters by dividing up screen space.

Several Treemap-based hierarchical graph visualization tech-
niques have recently been presented. This approach is appropriate
for large graphs because of its properties, such as small computation
time, reduced clutter, and efficient screen space usage. For exam-
ple, Zhao et al. [20] presented a technique which interchangeably
allows graph diagrams and Treemap to represent parts of a tree.

We presented a technique to quickly visualize clustered graphs
[11]. It begins by hierarchically clustering a graph based on its
connectivity, and then, it spreads out the nodes using a Treemap
layout. The technique was successfully applied to the so called
”California” graph, which contains 9663 nodes and 16151 edges.
In addition to displaying meaningful clusters, it was able to achieve
its result at 13 frames per second.

Several other techniques focus on drawing edges in a given tree
structure. Holten [7] presented a technique to draw edges of the tree
data as bundles. This technique is also useful for understanding the
brief structure of edges.

Note that there are no techniques introduced in this section that
take multiple categories into consideration.

2.5 Multiple Categorization
As discussed in Section 1, visualization of multiple-category graphs
is useful in various fields. Generally, relationships among cate-
gories and nodes can be represented as DAG. In the case of social
networks, communities are parent nodes, participants are children
nodes, and the children may have multiple parents. DAG visual-
ization is still a complicated problem even though various related
methods have been presented [15]. The Treemap-based DAG visu-
alization method [18] is relevant to our technique, but the method
may have to deal with NP-hard problems. Moreover, it does not
take connectivity of nodes into consideration. We do not expect
connectivity among nodes to be well-represented by simply draw-
ing edges on such DAG representations.

2.6 Visualization of Biological Networks
This paper applies the presented technique toward the visualization
of biological networks. Bioinformatics is an important area which
various information visualization techniques have been recently ap-
plied [16]. There have been many visualization techniques for gene
or protein interaction networks, and some of them are relevant to
our techniques since they represent experimental values (e.g. ex-
pression values obtained by microarray experiments) by coloring
nodes. Osprey [4] and PSIMAP [2] are typical examples that have
visualized gene/protein interaction networks and their experimental
values. However, their examples do not provide an optimal layout
of large-scale networks.

3 A HYBRID LAYOUT

This section presents a new technique for visualizing multiple-
category graphs. As discussed in Section 1, the technique is a
combination of force-directed graph layout and space-filling hier-
archical data visualization techniques. First of all, the technique
generates hierarchical clusters of nodes based on their categories
and connectivity. It then hierarchically calculates their positions by
applying force-directed and space-filling techniques.

This section describes the supposed data structure, clustering and
graph layout techniques, and functions for drawing and interaction.

3.1 Data Structure
In this paper we consider input graphs described as G = {N,L}.
N = {n1, ...,nnN} is a set of nodes, and nN is the total number
of nodes. Each of nodes ni has m-dimensional Boolean values,
ni = {b1, ...,bm}, m is the number of categories, and b j is true if
ni belongs to the j-th category. L = {l1, ..., lnL} is a set of links that



connect pairs of nodes, and nL is the total number of links. Nodes
and links are not weighted.

Our method generates hierarchical graphs described as G′ =
{C,E}. C = {c1, ...cnC} is a set of hierarchical clusters, consist-
ing of a set of children clusters, and nC is the total number of
clusters. Each of clusters ci has m-dimensional Boolean values,
ci = {bi1, ...,bim}, as well as those of nodes. The Boolean values
must be completely equal between a cluster and its children nodes
or clusters. E = {e1, ...,enE} is a set of edges that connect pairs of
clusters, and nE is the total number of edges. Each of edges ei has
a positive weight wi.

3.2 Hierarchical Clustering

(1) Root

(2) Top of 

categorized nodes

(3) Clusters of 

categorized nodes

(4) Clusters of 

non-categorized nodes

(5) Categorized nodes (6) Non-categorized nodes

Figure 1: Hierarchical structure for the presented technique. Catego-
rized nodes are clustered based on both connectivity and categories.
Non-categorized nodes are clustered based on connectivity.

Figure 1 shows the hierarchical data structure generated by the
following clustering algorithm. First of all, the algorithm divides all
the nodes into categorized nodes and non-categorized nodes. Here,
a categorized node ni means a node that at least one of its Boolean
values, b1 to bm, is true. Otherwise ni is a non-categorized node.

Then the algorithm applies connectivity-based graph clustering
to the sets of categorized and non-categorized nodes, respectively.
Current our implementation applies Fast Modularity community
structure inference algorithm [5], which joins nodes to groups of
densely connected nodes one-by-one, and consequently constructs
a dendrogram of the nodes. Our implementation then gathers the
nodes by a bottom-up traversal on the dendrogram, and generates
clusters that consist of densely connected nodes and/or lower-level
clusters. Recursively repeating the process, it finally constructs hi-
erarchical clusters of categorized and non-categorized node, shown
as (3) and (4), respectively, in Figure 1.

Finally, the technique gathers top-level clusters of categorized
nodes and connects them to a branch of a tree, shown as (2) in
Figure 1. Similarly, it gathers top-level clusters of non-categorized
nodes and directly connects them to the root, shown as (1) in Fig-
ure 1. This structure is useful to place all categorized nodes at the
center, and non-categorized nodes around the categorized nodes.

The graph clustering process consumes the largest part of the
computation time of the technique; however, if users deal with the
same data many times, they can store the clustering result so that
they invoke the clustering process only once.

3.3 Hierarchical Data Layout
The technique applies a space-filling hierarchical data layout tech-
nique, because the space-filling technique satisfies Requirements
3, 4, and 5, described in Section 1. Figure 2 shows an illustra-
tion of space-filling layout applied in the technique. It applies our
Treemap-like space-filling technique [8] [9], which represents the
hierarchy as nested rectangular regions. It represents the root of a

tree as entire layout space, and children nodes as interior rectangu-
lar regions.

(1) Root

(2) Top of categorized nodes

(3) Clusters of 

categorized nodes
(4) Clusters of 

non-categorized nodes

Figure 2: Illustration of space-filling hierarchy layout.

Since our Treemap-like layout is a bottom-up algorithm, it cal-
culates the positions of nodes and clusters in the following steps:

Step 1: Calculate positions of lower-level clusters, placed inside
the rectangular regions, shown as (3) and (4) in Figure 2.

Step 2: Calculate positions of clusters under the top branch of cat-
egorized nodes, placed inside the rectangular region shown as
(2) in Figure 2 .

Step 3: Calculates positions of clusters under the root node, placed
inside the rectangular region shown as (1) in Figure 2.

The presented technique applies our Treemap-like layout in Step 1,
and the hybrid layout introduced in Section 3.4 in Steps 2 and 3.

3.4 Hybrid Force-Directed and Space-Filling Layout
The technique places clusters in a hierarchy by applying a new hy-
brid force-directed and space-filling layout, for Steps 2 and 3 de-
scribed in Section 3.3. It firstly calculates the positions by a force-
directed algorithm, and then places the rectangles corresponding to
the clusters by our Treemap-like algorithm, referring the results of
the force-directed algorithm. Figure 3 shows the processing flow of
the layout algorithm.

(b) Force-directed layout

of subgraph G'={C,E}

(c) Positions as a template (d) Space-filling layout

(a) Clusters of

categorized nodes

Edge weight is proportional 

to the number of links
Connect if their 

category is 

common, even if 

there is no links 

Figure 3: Processing flow of the hybrid layout technique.

The technique firstly constructs a subgraph G′ = {C,E}, consist-
ing of clusters C which are the children of the branch-nodes shown
as (1) or (2) in Figure 1, and edges E. The technique generates an
edge ek connecting a pair of cluster ci and c j, if the pair satisfies at
least one of the following conditions:

Condition 1: At least one pair of nodes ni and n j is connected by
a link, ni is under ci, and n j is under c j .



Condition 2: One or more pairs of both bik and b jk are true.

The generated edges makes pairs of clusters closer, if the pairs are
connected by links or belong to common categories. The technique
calculates the weight wi of the edge ei as follows:

wi = anl +(1.0−a)r (1)
r = nAND/nOR (nOR > 0)

r = 0.0 (nOR = 0) (2)

Here,

• a is a constant value satisfying 0 < a < 1,

• nl is the number of links connecting nodes under ci and nodes
under c j ,

• nAND is the number of dimensions of Boolean values that both
bik and b jk are true, and

• nOR is the number of dimensions of Boolean values that at
least bik or b jk are true.

Figure 3(a) is an example of a set of clusters of categorized
nodes. Here, four clusters (red, yellow, green, and blue nodes in-
side) are connected by links, but other two clusters (red and green
nodes inside) are isolated. Figure 3(b) is an example of the sub-
graph. Here, edges of the subgraph connect clusters which satisfy
at least one of the above conditions. Equation (1) works so that the
edges are more weighted according to the number of links connect-
ing the clusters, or similarity of their Boolean values.

The technique then calculates the position of the clusters by ap-
plying a force-directed layout technique that can deal with weighted
edges. Currently, our implementation applies the LinLog algorithm
[12]. It then applies our Treemap-like rectangular packing algo-
rithm [8] to realize space-filling layout. The algorithm refers the
positions of clusters calculated by the force-directed layout as a
template, as shown in Figure 3(c). It attempts to minimize the sum
of the three penalties, which are calculated from:

• distances of corresponding rectangles from the positions de-
scribed in the template,

• aspect ratio of the layout space, and

• area of the layout space,

as described in Section 5 of the reference [8]. Figure 3(d) illustrates
the result of the space-filling layout process.

The hybrid layout brings the features of both layout techniques:
smaller edge lengths by force-directed layout, no cluttering and
better screen space utilization by space-filling layout. Moreover,
space-filling layout algorithm does not occupy large part of compu-
tation time, at least in our test cases, because numbers of clusters
connected by parent nodes ((1) or (2) in Figure 1) are much smaller
than the total number of nodes.

3.5 Drawing and Adjustment
Currently, our implementation supports the following features for
effectively drawing the multiple-category graphs.

Node Swapping
When an edge connects two nodes that are in adjacent clusters, it
may have to travel through the two cluster regions. We can improve
the visualization by swapping the position of the node with that
of another node in the same cluster. Based on this idea, our imple-
mentation swaps positions of nodes in a cluster after completing the
space-filling hierarchy layout. This process firstly sorts the nodes
in a cluster in descending order based on their degree. Then, as the

current node traverses the positions of all unfixed nodes in the clus-
ter, it calculates the sum of link lengths for all links connecting to
the node. Once the best position is found, the process swaps node
positions and fixes the current node. The process repeats one-by-
one in sorted order.

Randomization

The collinear node problem found in the Treemap-based technique
[11] is also inherited by our approach. Whenever nodes are placed
collinearly, edges between these nodes may overlap, making it dif-
ficult to understand the connections. To help correct this problem,
our implementation adds small random positive or negative values
to node positions.

Node Concentration

We assume that users are often interested in connectivity be-
tween pairs of categorized nodes or pairs of categorized and non-
categorized nodes but not in pairs of non-categorized nodes. In
this case, we do not need to show details of clusters among non-
categorized nodes, and focus and context techniques are useful for
providing this type of support.

Currently, our implementation concentrates non-categorized
nodes to the center of their rectangular regions. This feature hides
the detailed connectivity among non-categorized nodes and clari-
fies inter-cluster relationship between pairs of categorized and non-
categorized clusters.

Also, our implementation features the ability to distort regions
where non-categorized nodes are placed by moving the clusters of
non-categorized nodes closer to the clusters of categorized nodes. It
simply calculates the new position of a non-categorized node (x′,y′)
from its original position (x,y) by the following equations:

x′ = (1.0−d)x+dxc0 (x < xc0)
x′ = x (xc0 ≤ x ≤ xc1)

x′ = (1.0−d)x+dxc1 (x > xc1)
y′ = (1.0−d)y+dyc0 (y < yc0)

y′ = y (yc0 ≤ y ≤ yc1)
y′ = (1.0−d)y+dyc1 (y > yc1) (3)

Here, d is a constant value satisfying 0 < d ≤ 1, xc0 and xc1 are the
x-coordinates of the left/right edge of the top cluster of categorized
nodes, and yc0 and yc1 are the y-coordinates of the lower/upper edge
of the top cluster.

By using this feature, users can view overall context of the graph
while zooming in on the categorized nodes. An example in Section
4 demonstrates the effectiveness of the feature.

Drawing

Figure 4 shows how to draw nodes and links with our current im-
plementation.

Our implementation assigns independent colors to the categories
and draws the categorized nodes as colored circles. When a node
belongs to multiple categories, the implementation divides the cir-
cle into multiple fans, similar to a pie chart. The colors are assigned
so that each fan is closest to the adjacent clusters of the same color.
Our approach calculates radii of nodes from the number of con-
nected links because we would like to emphatically represent hub
nodes. For non-categorized nodes, however, our implementation
simply draws smaller gray dots. Also, current our implementation
allows for category selection via a graphical user interface. If a
user selects a category, it highlights the nodes which belong to the
selected category and draws other categorized-nodes darker.

At the same time, the implementation draws each link in one of
following three levels:



Level 1: The line is relatively thick and bright. Our implementa-
tion usually draws links connecting two categorized nodes as
Level 1. If a user selects a category on the GUI, it applies
Level 1 only to the links connecting one or two nodes belong-
ing to the selected category.

Level 2: The line is moderately thick and bright. Our implemen-
tation draws links connecting pairs of categorized and non-
categorized nodes as Level 2.

Level 3: The line is relatively thin and transparent. Our imple-
mentation draws links connecting two non-categorized nodes
as Level 3.

Colors of nodes 

denote categories

Categorized nodes 

are drawn as 

colored circles

There are 3 levels of 

thickness and 

transparency of links

Non-categorized 

nodes are drawn as 

gray dots

Radii of nodes denote 

number of links

Three colors denote 

that the node belongs 

to three categories

Figure 4: Drawing style of our implementation. It distinguishes cat-
egorized and non-categorized nodes by the colors of nodes and the
thickness/transparency of links.

3.6 Interactive Layout Modification
We assume that users are more often interested in connectivity of
nodes that belong to a specific category. Our hybrid layout algo-
rithm attempts to place clusters that belong to the same categories
close together. However, this is a complicated procedure because
the layout takes both connectivity and categories into considera-
tion, and therefore, it is often difficult to obtain the best placement
for every cluster. One solution to this problem is interactive selec-
tion of categories of interest and layout modification so that these
important clusters are placed in close proximity.

Figure 5 shows an illustration of the layout modification. When
selecting a category, the process firstly extracts clusters that belong
to the category. It fixes the cluster cF that contains the largest num-
ber of nodes in the extracted clusters. It then moves other clusters
around the fixed cluster, as shown in Figure 5(right). Digits in Fig-
ure 5 denote the categories of the clusters, and the rectangle painted
in sky-blue denote the fixed cluster cF . An example in Section 4
shows the effectiveness of this feature.

1
1+2
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2

2

1+3

3+44
1+3+4

1
1+2

5
2

2

1+3

3+44
1+3+4

1+3+4

1+3Select the

category "1"

Figure 5: Local modification of clusters to closely place the clusters
belonging to the selected category.

When calculating the position of moving clusters, our system
firstly connects cF and other extracted clusters by temporary edges

and calculates their weights with equation (1). The process then
sorts the extracted clusters in descending order of weights of the
temporary edges. It then calculates their positions one-by-one in the
sorted order. Afterwards, it extracts multiple candidate positions,
as described in Section 3 of the reference [9]. Finally, it selects
the position closest to cF , to place the current cluster there. By
repeating this process in the order of the temporary edge weights,
tightly connected clusters are placed closer together.

4 EXAMPLES AND DISCUSSION

This section shows some examples of the visualization results, and
discusses the effectiveness of the presented technique. We devel-
oped the technique with JDK (Java Development Kit) 1.5, and ex-
ecuted on a MacBook Pro (CPU 2.2GHz, RAM 2.0GB) with Win-
dows XP Service Pack 2. We used a test data set containing 6,512
nodes, 7,564 links, and 10 categories. Computation time was 21.3
seconds for hierarchical clustering, and 4.7 seconds for data lay-
out. Though hierarchical clustering process occupied a large part
of computation time, we only needed to do it and store the result
once.

Figure 6 shows an example of the results, zooming in the clusters
of categorized nodes. In Figure 6(left) only links connecting pairs
of categorized nodes are highlighted. The layout result looks desir-
able, because many nodes connected by links or painted in the same
colors get closer, and the nodes are compactly placed. For example,
bright blue and red nodes are concentrated in the lower-left region
indicated as [A] in Figure 6(left), and a hub node is properly placed
in a cluster that is closer to the adjacent two clusters. Similarly, dark
blue and brown nodes are concentrated in the lower-right region in-
dicated as [B] in Figure 6(left). Yellow nodes are concentrated in
the central region indicated as [C] in Figure 6(left). Meanwhile,
two sets of nodes are isolated in the upper-right region indicated as
[D] in Figure 6(left). One set contain green and orange nodes while
the other contains the bright green and blue nodes.

Figure 6(right) shows rectangular borders of the clusters. Here,
the figure denotes that the technique presented no cluttering.

A

B

D

C

Figure 6: Result(1). Zooming in the categorized nodes. (left) Nodes
connected by links or painted in the same colors properly get closer,
indicated as [A], [B], and [C]. Almost isolated two sets of nodes are
properly separated, indicated as [D]. (right) Rectangular regions of
the clusters. No nodes or clusters are cluttered.

Next, let us discuss about the advantage of the presented layout
against simply applying force-directed or space-filling layout.

We first applied hierarchical clustering and space-filling layout to
the same data, without applying force-directed layout, for the com-
parison with the presented technique. We generated the following
two types of hierarchical graphs for this test, so that space-filling
layout can reflect both categories and connectivity:

• Hierarchical graph 1: We divided the nodes into categorized
and non-categorized nodes, and divided the categorized nodes
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Figure 7: Comparison with existing techniques. (upper left) Re-
sult with hierarchical clustering 1. There are too many intersections
among edges. (upper right) Result with hierarchical clustering 2. Two
clusters belonging to the common categories separate each other, in-
dicated as [A] and [A’], [B] and [B’], and [C] and [C’]. (lower) Result by
simply applying force-directed layout. Some clusters are not clearly
represented. Moreover, it takes more than 4 minutes.

based on their categories. Finally, we divided the nodes of
each cluster based on connectivity.

• Hierarchical graph 2: We divided the nodes into categorized
and non-categorized nodes, and divided the categorized nodes
based on their connectivity. Finally, we divided the nodes of
each cluster based on their categories.

Figure 7(upper) shows the result of displaying the above two hi-
erarchical graphs by applying space-filling data layout. Computa-
tion times were smaller than the presented technique: 1.3 seconds
for hierarchical graph 1, and 1.2 seconds for hierarchical graph 2.
Figure 7(upper left) shows that the space-filling layout could com-
pactly represent hierarchical graph 1. Since the nodes are firstly
clustered based on their categories, it could closely place the nodes
painted in the same colors. However, it is quite difficult to under-
stand the connectivity because many pairs of far nodes are con-
nected and therefore many links tangle with one another.

On the other hand, Figure 7(upper right) shows that space-filling
layout could preferably represent hierarchical graph 2. Since the
nodes are firstly clustered based on their connectivity, it could com-
prehensively draw the links. However, clusters painted in the same
colors are often separately placed, such as dark blue nodes indi-
cated as [A] and [A’], bright blue nodes indicated as [B] and [B’],
and yellow nodes indicated as [C] and [C’].

We numerically evaluated the layout results by the hybrid lay-
out and space-filling layouts using hierarchical graphs 1 and 2. For
the evaluation, we firstly normalized the positions of all categorized
nodes. Here, positions of the corners of the rectangular region en-
closing all the categorized nodes are (−1,−1),(−1,1),(1,−1), and

(1,1). And then we calculated the five metrics: maximum and av-
erage distances between pairs of nodes which belong to completely
common categories, maximum and average lengths of links con-
necting two categorized nodes, and total number of intersections of
the links connecting two categorized nodes. Table 1 denotes the re-
sults of the numerical evaluations. In the table, HG1 and HG2 are
hierarchical graphs 1 and 2, respectively. It shows that maximum
and average lengths of links and number of intersections were much
larger when we used HG1. Also, it shows that maximum and aver-
age distances of nodes were relatively large when we used HG2.

Above results suggest that it is a difficult problem to satisfy
both category-based and connectivity-based requirements by sim-
ply drawing hierarchically clustered graphs. The hybrid layout can
potentially meet both requirements.

Table 1: Evaluation of our hybrid method with other methods.
HG1 HG2 Hybrid

Distance of nodes (max.) 2.133 2.374 2.155
Distance of nodes (ave.) 0.827 0.879 0.776
Length of links (max.) 2.089 1.389 1.326
Length of links (ave.) 0.567 0.254 0.255
Number of intersections 5123 1746 1489

Next, we applied the LinLog force-directed algorithm [12] to
the same data, without applying hierarchical clustering. Figure
7(lower) shows the result. It succeeded to show some of the clusters
but not all. It is similar to the result shown in [11], that hierarchical
graphs prove useful to represent clusters of the graphs. In addition,
the computation time was much larger by simply applying force-
directed layout. The experiment required 267.5 seconds for 100
times of iterative calculation, even though LinLog implementation
applies a quadtree for acceleration. On the other hand, our hybrid
layout algorithm required 4.7 seconds with our test data, as men-
tioned above. 2.6 seconds was spent for force-directed layout, 1.7
seconds was spent for template-based space-filling layout, and 0.4
seconds was spent for the rest of processes, such as lower-level data
layout (without using the template), and node swapping. We think
that hybrid technique is therefore preferable in performance over
traditional force-directed techniques.

Figure 8 shows an example of results, zooming out to display
the whole graph. Figure 8(upper left) shows the original layout,
and Figure 8(upper right) shows that non-categorized nodes are
concentrated to the centers of the clusters. The result shows that
the node concentration process improves the comprehensibility of
inter-cluster connectivity. Figure 8(lower) shows that the clusters of
non-categorized nodes are not only concentrated but also distorted
to get closer to the clusters of categorized nodes. The result shows
the focus and context effect, which makes easier to understand the
connectivity of non-categorized nodes while zooming in the cate-
gorized nodes.

Figure 9 shows an example of results, when a category (painted
in dark orange) is selected. Both left and right images highlight
links connected to the dark orange nodes. Figure 9(right) is an ex-
ample that applies local modification so that the dark orange nodes
get closer, while Figure 9(left) is an example that does not apply.
If users would like to focus on a specific category and zoom in the
corresponding clusters, the local modification should be useful.

5 A CASE STUDY: VISUALIZATION OF AN ACTIVE BIOLOG-
ICAL NETWORK

The test data introduced in Section 4 was originally an active bi-
ological network. The network was created by a co-author of this
paper who works in bioinformatics. The network was generated by



Figure 8: Result(2). (upper left) Original layout. (upper right) Non-
categorized nodes get closer to centers of the clusters. It helps to
understand inter-cluster connections. (lower) Non-categorized nodes
are distorted and get closer to categorized nodes, to realize focus
and context. It helps to understand which clusters of non-categorized
nodes are tightly connected to specific categorized nodes.

d-COPINE algorithm [14], from a protein-protein interaction net-
work consisting of 6,152 genes, and 7,564 interactions between
pairs of genes. Also, the genes had expressions of 173 types of
stress conditions. In other words, the original graph data consisted
of 6,152 nodes with 173-dimensional values, and 7,564 links.

Goal of the data construction was simultaneous identification of
the active biological networks and conditions from protein-protein
interactions and gene expression data. To archive the goal, d-
COPINE extracted interaction subnetworks, called common pattern
graph (CPG) in [14], whose genes satisfy common expression or re-
pression conditions. Here, the expression or repression conditions
can be described as a logical multiplication of equation/inequation
of the values in the specific dimensions.

As a result, d-COPINE defined 10 expression or repression con-
ditions to adequately extract subnetworks, while it allowed genes to
satisfy multiple conditions. These conditions were useful to iden-
tify specific interactions of genes. We used the network as the test
data, treating the 10 conditions as categories. We discussed with the

Figure 9: Result(3). (left) Highlighting links connecting nodes that
belong to the specific category, without layout modification. (right)
Highlighting links connecting nodes that belong to the specific cat-
egory, with layout modification. The layout modification is useful to
zoom in the specific category.

co-author of the paper how the visualization result shown in Figure
10 gained us knowledge about the active biological network.

Here we can clearly observe some hub nodes, indicated as [A] in
Figure 10, where such hub genes are often responsible genes. Ob-
servation of such hub nodes and their connectivity is often helpful
for clarification of the cause of diseases and development of drugs.

Several nodes indicated as [B] in Figure 10 belong to three or
more categories, and connect to nodes in large clusters. The result
means that these genes are sensitive with many conditions, and have
interactions with many other genes. Such multifunctional genes
often place on important portions of living bodies. However, it is
difficult to clarify the behavior and functionality of such important
genes, because experiments for the genes may often kill the cells
that the genes belong to. Therefore, it is important to alternatively
observe which nodes/clusters such important genes interact with,
because this knowledge is helpful to understand their behavior. The
result shows that the presented technique can contribute to observe
such important multifunctional genes.

Figure 10 [C] shows that a subgraph, consisting of nodes painted
in orange or dark green, is disconnected from other categorized
nodes. This result shows that d-COPINE found two good condi-
tions, because we can separately observe the genes in the subgraph
from other categorized genes. It means that the presented technique
can be used to determine the quality of categorization results.

Figure 10(lower) shows an interesting feature of multiple cate-
gorizations by d-COPINE. There are three pairs of clusters [D] and
[D’], [E] and [E’], and [F] and [F’], which consist of nodes painted
in the same color. It shows that d-COPINE defined conditions that
contribute to extract multiple subgraphs. This kind of clustering re-
sult is novel in active biological network analysis, and we expect
such result may bring new knowledge in this field.

Observation of inter-cluster connectivity between categorized
and non-categorized nodes is also an interesting issue. Figure 8
shows that the presented technique clearly represents connections
between clusters of nodes belonging to specific categories and clus-
ters of non-categorized nodes. It is possible to discover interesting
clusters of non-categorized nodes that have many interactions with
specific categorized nodes by using the presented technique. Or, it
is also possible to define more categories from the result, if such
clusters consist of non-categorized nodes which have common ex-
pression/repression conditions.

6 CONCLUSION

This paper addresses the need of understanding multiple-category
graphs by introducing a hybrid space-filling and force-directed lay-
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Figure 10: Visualization of an active biological network. In consul-
tation with a bioinformatics scientist, we found our layout helps find
hub genes indicated as [A], and important genes that belong to many
categories indicated as [B]. It also helps to find clusters successfully
isolated indicated as [C], and sets of clusters belong to completely
common categories but separated, indicated as [D] and [D’], [E] and
[E’], and [F] and [F’].

out method. The case study shows that the hybrid layout method
helps reveal important features of an active biological network.

Our method has two potential limitations. Firstly, the cost of
our method grows with the number of categories. Fortunately, in
practice, most data sets contain a moderate number of categories.
Secondly, since we color nodes according to their categories, there
is a limit on the number of distinguishable colors. One possible
solution is to incorporate glyph-based multi-dimensional visualiza-
tion techniques [19], and the other is to display the graph at multiple
abstraction layers based on a hierarchy for categories.

Without losing generality, our study to date is based on one par-
ticular multiple-category graph data set. We anticipate obtaining
additional data sets to expand our case study and perform more
comprehensive evaluations. Multiple-category graphs are com-
monly found in other applications. We will also apply our tech-
niques to these other applications.
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