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Abstract

We previously applied our own hierarchical data visual-
ization technique for structure-activity relationship (SAR)
analyses of biochemical data. The study applied a recur-
sive partitioning to store the drugs as hierarchical data,
based on their chemical structures, and visualized the hier-
archy of drugs. Though the activity data of drugs is usually
multi-dimensional, our previous work did not represent the
multi-dimensional values onto one display space. This pa-
per presents a technique for visualizing hierarchical multi-
dimensional data, and its level-of-detail (LOD) control,
for visualization of multi-dimensional bioactive chemical
data. The technique is an extension of our hierarchical
data visualization technique, where the extended technique
places leaf-nodes as well as the original hierarchical data
visualization technique, and represents multi-dimensional
values by dividing the icons of the leaf nodes.

1 Introduction

Drug discovery and development is costly, time con-
suming, and high risk activity. The process starts with the
discovery of chemicals or clusters of chemicals with par-
ticular biological activity. Information visualization tech-
niques should be useful to discover characteristics from
such multi-dimensional and large-scale data. We are espe-
cially interested in the visualization of collection of multi-
dimensional and large-scale chemical compound data for
drug discovery.

Our previous paper presented the visualization of bioac-
tive chemicals [7] by applying our own hierarchical data
visualization technique. The previous work visualized cor-
relation between chemical structures and receptivity to Cy-
tochrome P450 (CYP) enzymes, which are a super-family
of drug metabolizing enzymes that extensively affect the
elimination of drugs from the body. The work visualized
the structure-activity relationship (SAR) analyses of CYP-
related metabolism. Here, the previous work visually an-
alyzed metabolic susceptibility of 161 drugs to major five
CYP isoforms (i.e., 1A2, 2C9, 2C19, 2D6, and 3A4), be-
cause only the five CYP isoforms account for 95% of hep-
atic drug metabolism though more than 40 CYPs encoded

in the human genome [9]. Design of molecules or their
libraries becomes more effective, by understanding what
molecular structural attributes relate to substrate specificity
of each CYP isoform. Our work applied a recursive parti-
tioning method to find the relationship between metabolic
susceptibility profile and chemical structure, and it finally
stored the drugs as hierarchical data. Our previous paper
[7] discussed about structure-activity relationship the drugs
from our visualization results. Though the activity data
of drugs is usually multi-dimensional, our previous work
did not attempt to visualize the multi-dimensional values
onto one display space. We need to develop a hierarchical
multi-dimensional data visualization technique for bioac-
tive chemical data, to visually understand the structure-
activity relationship from the single visualization result.

The paper presents a visualization technique for hierar-
chical multi-dimensional data of bioactive chemical data.
The technique is an extension of our hierarchical data vi-
sualization technique [6, 7], where the extended technique
places leaf-nodes of tree structure as well as our own hier-
archical data visualization technique, and then represents
multi-dimensional values by dividing the icons of the leaf
nodes. The technique assigns independent hue to the sub-
regions of the icons, so that each hue denotes each dimen-
sion of the multi-dimensional values. It then calculates
the saturation and intensity of the subregions from each of
multi-dimensional values, so that saturations and intensi-
ties denote the values. We think this representation is intu-
itive to visually understand the correlation between chemi-
cal structures and experimental values of drugs: if correla-
tion between chemical structures and experimental values
of drugs in a cluster is high, the technique visualizes the
drugs as icons with uniform color patterns.

The paper also presents the level-of-detail (LOD) con-
trol technique, which unifies multiple icons in a lower-level
cluster into a representative icon. The technique divides
the subregions of icons into several triangles based on the
histogram of the experimental values, and the triangles rep-
resent variation of the values. This LOD control technique
enables visualization of variation of experimental values in



high-level clusters of drugs, as well as experimental values
of independent drugs.

2 Related Work
2.1 Multi-dimensional Data Visualization Tech-
nique

There have been a lot of multi-dimensional data
visualization techniques, including Parallel Coordinates
[5], Worlds within Worlds [3], scatter plots techniques,
dimension-reduction-based techniques such as Design
Galleries [8], and several glyph-based techniques [4].

The technique presented in this paper is aimed to be
used as a user interface, where data elements are displayed
as clickable icons. The former four techniques do not al-
ways avoid overlaps among data elements on the display,
however, it is better to avoid them if we would like to dis-
play the data as clickable icons. Our technique therefore
places the icons by applying our own hierarchical data vi-
sualization technique, and represents the multidimensional
data by a glyph-like approach.

2.2 Hierarchical Data Visualization Technique

There have been a lot of hierarchical data visualization
techniques as well as multi-dimensional data visualization
techniques, which are categorized as space-filling and tree-
based approaches.

Our space-filling hierarchical data visualization tech-
nique [6, 7] represents hierarchical data as small icons and
nested rectangles. Quantum Treemap [1] is very analo-
gous to our technique, because both techniques subdivide
display spaces into rectangular areas, and represents leaf
nodes of tree structure as non-overlapped equally-shaped
icons. Actually Quantum Treemap can be an alternative
method to our technique for the purpose of this paper.
Experiments described in [6] discusses trade-offs between
Quantum Treemap and our technique: ours had better nu-
merical results in aspect ratios of rectangular subregions,
and similarity of display results among similar data. One
more feature of our technique is that it can display indepen-
dent images as equally-sized thumbnails; even the depth of
hierarchy is deep or inhomogeneous. It is unclear if Quan-
tum Treemap can display every leaf-node as equally-sized
icons if the depth of hierarchy is inhomogeneous.

3 Hierarchical Multi-dimensional Data Vi-
sualization Technique

3.1 Requirements

Following are requirements we believe are important for
the visualization of multi-dimensional hierarchical bioac-
tive chemical data.
1) We would like to equally visualize each of drugs; it
is therefore preferable that all drugs are represented as
equally-shaped and equally-sized icons, and they never
overlap each other on a display space.

2) We would like to equally visualize each dimension of
values; it is therefore preferable that all dimensions of val-
ues are represented as equally-shaped and equally-sized
metaphors.

3) We would like to visualize distribution of experimen-
tal values at multiple levels; it is therefore preferable that
the experimental values can be represented either drug-by-
drug or cluster-by-cluster. The cluster-by-cluster represen-
tation is also useful, when the data is very large-scale and
it is difficult to display all the icons of drugs in one display.
4) We would like to satisfy the above requirements even if
the depth of hierarchy is deep or inhomogeneous.

For the first requirement, we apply our own hierarchical
data visualization technique. For the second requirement,
we present an extension of our hierarchical data visualiza-
tion technique to represent multi-dimensional values. For
the third requirement, we present a LOD control technique
to visualize the data at multiple levels.

3.2 Multi-dimensional Value Representation

This section presents our hierarchical multi-
dimensional data visualization technique, which is an ex-
tension of our hierarchical data visualization technique
[6, 7]. The presented technique represents the hierarchy
of the data as well as our technique, and then subdivides
the icons of leaf-nodes into n subregions if the data has
n-dimensional values. It then assigns independent hue to
each subregion, and represents each of the n-dimensional
values by saturations and intensities of the subregions.
This section denotes the i-th value of a leaf-node as ¢;
0 <i<n).

The technique first subdivides square icons representing
leaf-nodes as [ x m grid subregions. Our implementation
calculates [ and m, as | = [\/n] + 1,and m = [n/l] + 1.
Here, [t] denotes an integer value that does not exceed ¢,
and products of [ and m are always equal to n or more than
n. The technique assigns each of n-dimensional values to
each subregion. It is possible that the product of [ and m
is larger than n, but in this case our implementation lets
odd subregions as blank. This representation is quite sim-
ple, but we think it is reasonable. The presented technique
aims to display hundreds or thousands of leaf-nodes with-
out overlapping in one display, and therefore areas of the
leaf-nodes would be small. At the same time, it is better
to subdivide display spaces into squares rather than thin
shapes, especially when they are small on the display [2].
Based on this discussion, the technique simply divides the
icons into square-like subregions.

The technique then calculates the colors of the subre-
gions. It uses HSI color system, where this section de-
notes hue as H, saturation as .S, and intensity as I. It
first selects n subregions, and independently assigns hues
to each n subregion. Our implementation simply calcu-
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Figure 1: Unified representation of values of lower-level nodes into one higher-level representative node.

lates H (0 < H < 2m) as H = 2xi/n. It then calcu-
lates S (0 < S < 1and I (0 < I < 1) from the i-th
value t; (0 < ¢ < mn), where we assume ¢; is normalized
as 0 < t; < 1. Our implementation simply calculates .S
and [ as S = I = 0.2 + 0.8¢;. Consequently, the tech-
nique assigns different hue for each subregion to represent
different dimensions, and represents the values by satura-
tion and intensity. This implementation is suitable while
the data has a property that importance of a node increases
when its values get higher. Otherwise, we need to recon-
sider the equation to calculate S and I.

3.3 Level-of-Detail Control

Figure 1(a) shows an example of visualizing hierarchi-
cal multi-dimensional data by our technique, and its zoom-
in view of a part of the data. This example shows that we
need zoom-in operations to visually recognize each value
of leaf-nodes of large-scale data. In other words, it may be
difficult to visually recognize the values of every leaf-node
of the large-scale data in one display, since the displayed
leaf-nodes very small. To solve the problem, the technique
provides a level-of-detail (LOD) control technique that ad-
justs the number and sizes of icons on the display, by unify-
ing lower-level nodes as a representative higher-level node.
Figure 1(b) shows an example of five icons of leaf-nodes
which have 5-dimensional values. Our technique unifies
the five icons as a representative icon.

The technique forms a histogram of values of lower-
level nodes by dividing their range into N intervals, where
the first interval is the maximum, and the N-th interval is
the minimum, as shown in Figure 1(c). It uses the his-
togram to represent the variation of the values by the rep-
resentative node. Our implementation fixes NV as 3.

Let upper-left, upper-right, lower-left, and lower-right
corners of the subregion as Ay, B, C, and Ay, as shown
in Figure 1(d). The technique draws a diagonal line be-
tween Ay and Ay, and divides the line into [NV segments,

while generating vertices A; to Ay_1 between Ay and
Apn. It calculates dj, the distance between A;_; and A;
(j = 1..N), by the following equation:

Ny

N
D k=1 Tk
where L is the length between Ay and Ay, n; is the
number of nodes categorized in the j-th interval of the
histogram. Finally, the technique paints two triangles,
Aj_1A;Band A;_1A;C, to represent the j-th interval of
the histogram. Here, it calculates S and I, where t; of j-th
interval is calculated by the following equation:

d; = L 1)

(j —0.5)min; + (N + 0.5 — j)max;
N

where min; is the minimum value, and max; is the maxi-

mum value of the i-th dimension, respectively. This rep-

resentation makes easier to visually distinguish between

leaf and non-leaf nodes, because diagonal intensity borders

only appear in the representative nodes of clusters.

In addition to the above representation, our implemen-
tation automatically controls the LOD interlocking to the
zooming operation of a user. The technique unifies lower-
level icons into less number of representative higher-level
icons according to the zoom-out operation. It also inversely
replaces representative higher-level icons by larger number
of lower-level icons according to the zoom-in operation.

Figure 2 shows an example of LOD control interlocking
to the zooming operation. The zoom-out display of Figure
2 represents representative nodes of higher-level clusters.
While the zoom-in operation, the representative icon in the
red box is replaced by four representative icons, and fi-
nally replaced by icons corresponding to leaf-nodes of the
tree structure. Users can explore the interesting lower-level
hierarchy by the zooming operation.

Our implementation simply draws rectangular areas of
branch-nodes as representative icons, because we would
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Figure 2: Level-of-detail control (LOD) interlocking to the zoom operation.

like to represent them as large as possible without over-
lapping each other. Here, it is usually better to draw the
representative icons as squares rather than thin rectangles.
Since our previous paper experimentally proved that our
hierarchical data visualization technique was good at as-
pect ratio of rectangular subregions for representing clus-
ters [6], it appears that our data visualization technique is
preferable for this purpose.

4 Visualization of Bioactive Chemical Data
4.1 Construction of Hierarchical Multi-
dimensional Data

This section describes the experiments of visualiza-
tion of multi-dimensional data of bioactive chemicals. In
this experiment, we used the metabolism data of 161
drugs against five CYPs (CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4). Here, CYP is an abbreviation for
cytochrome P450, which is a collective term of proteins
work as isozymes. The above five CYPs mainly work in
livers. In this experiment we analyzed metabolic suscepti-
bilities of drugs with the five CYPs. Here some drugs have
high susceptibility values with many of CYPs, and some
others have none or only one of CYP. Our interest is to
discover correlations between chemical structures and sus-
ceptibility values as many as possible; we expect that such
discover can contribute to predict the experimental values
of newly designed drugs.

We first gathered five values of metabolic susceptibili-
ties for each of 161 drugs, and then normalized the values.
We then constructed hierarchical five-dimensional data by
recursively dividing the drugs according to their structural
features. Each of the division process formed two subsets
of the drugs to maximally increase the information gain,
which is defined as the reduction of information entropy.

In our study, the information entropy h was defined as:

h = Z ~P(si)logP(si), P(si))=— )

where n; is numbers of drugs in the i-th cluster, and V is
the total number of the drugs, respectively.

Let the information entropy of a drug group as hg, and
the information entropy of the two subsets as h; and ho.
We applied various molecular constitutional descriptors as
a trial, to divide the drugs into two subsets, and calculated
the information gain G = ho — (hy + hz). We took on the
descriptor which brought the maximum G value. Recur-
sively repeating this division, we constructed a binary clas-
sification tree, and treated the tree structure as hierarchical
data. We used Dragon 5.2 (Talete srl, Italy) [10] as the
molecular constitutional descriptors derived from chemi-
cal structure.

4.2 Visualization Results

Figure 3(Left) shows an example of the visualization of
hierarchical multi-dimensional data constructed by afore-
mentioned procedure. Here, metabolic susceptibility of
the five CYPs is represented as the following five colors:
CYP1A2 as red, CYP2C9 as yellow, CYP2C19 as green,
CYP2D6 as blue, and CYP3A4 as magenta.

In the recursive partitioning analysis, the primary de-
scription raised for classification was whether sum of
atomic Sanderson electronegativity (Se) would be less than
44.89 or not. In Figure 3(Left), left cluster (pointed as (A))
contains drugs whose Se values are less than 44.89, and
in the cluster there are no icons with red and green subre-
gions that are bright. The visualization result proves that
the primary description is very correlative with CYP1A2
and CYP2C19.

Figure 3(Upper-center) and (Upper-right) is two typical
parts of the visualization result shown in Figure 3(Left).
Here, it is often caution needed if a drug is susceptible
with only one isozyme, because the dynamics of the drug
strongly depends on the isozyme, and therefore risk of drug
interaction may get higher. In this case, only one color of
icons becomes bright.

Figure 3(Upper-center) shows caution needed clusters
of drugs, since only one subregion is bright in many of
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Figure 3: Example of visualization result.

icons, and same colors are bright in the most of icons
of the clusters (pointed as (B)). If untested drugs have
same chemical structures with the clusters shown in Figure
3(Upper-center), users can expect that the untested drugs
have experimental values similar to the drugs in the clus-
ters, and they are caution-needed.

On the other hand, Figure 3(Upper-right) shows many
preferable drugs, since multiple subregions are bright in
many of icons. In this case, the drugs are susceptible
with multiple isozymes, and therefore risk of drug inter-
action may get lower. However, different colors of icons
are bright in some of the clusters (pointed as (C)) in Fig-
ure 3(Upper-right). If untested drugs have same chemi-
cal structures with the clusters shown in Figure 3(Upper-
right), it is difficult to predict the experimental values of
the untested drugs.

Figure 3(Lower-center) and (Lower-right) represents
the same two parts as representative icons of mid-level
clusters, also shown in Figure 3(Upper-center) and (Upper-
right). Figure 3(Lower-center) shows that only one or
two colors are bright in most of representative nodes, and
most of their subregions look almost rectangular, except a
lower-right large representative node (pointed as (D)) have
non-rectangular bright blue and magenta subregions. We
can easily observe that Figure 3(Lower-center) contains
many clusters which contribute to the prediction of exper-
imental values, thanks to the LOD control. On the other
hand, Figure 3(Lower-right) shows that all three represen-
tative nodes have subregions which do not look rectangu-
lar. Again, we can easily observe that Figure 3(Lower-
right) contains clusters which do not contribute to the pre-

diction of experimental values, comparing with the clusters
shown in Figure 3(Lower-center).

One of our motivations for the visualization of bioactive
chemical data is that we would like to visualize a variation
(maximum and minimum values) of experimental values in
high-level clusters of drugs, as well as experimental values
of each drug. We think such kind of LOD control is a good
approach to interactively get and return high- and low-level
information of bioactive chemical data.

As mentioned above, we think that this kind of bioac-
tive chemical data visualization technique will be useful
for prediction of functionality or experimental values (e.g.
metabolic susceptibility) of untested new drugs. If chem-
ical structures of the new drugs are already known, and
the correlation between their chemical structures and ex-
perimental values are high, we expect that we can predict
their experimental values before experiments, and the es-
timation can contribute to reduction of experiment costs.
Our visualization technique really has been already used
in the research and development divisions of a pharmaceu-
tical company, and contributes to screening of test drugs
during their development.

4.3 User Experiments and Discussion

We had user experiments of the presented technique,
and especially discussed about effectiveness of the LOD
control technique. We asked 11 examinees to use and dis-
cover our user-interface for several minutes, and evaluate
it. All the examinees were grad or undergraduate students
belonging to computer science division.

First, we prepared a hierarchical 5-dimensional data,
and asked examinees to discover specific lowest-level clus-



ters within 30 seconds. The specific clusters were that ”the
clusters which all dimensions of experimental values of ev-
ery node are constant”. Actually, the data contained 16
clusters satisfying the condition. We provided two imple-
mentations of the presented technique: one supported the
LOD control, and the other did not support it. This test
proved that the LOD control helped the users in discover-
ing more specific clusters ! .

Second, we prepared various hierarchical 5-
dimensional data, and asked examinees to look for the
lowest-level cluster which have a specific feature, by op-
erating our technique. We measured the time taken by the
examinees to discover the specific lowest-level cluster. In
this experiment we specified the following feature: Two
specific dimensions vary, and three other dimensions are
constant, among the values of the leaf-nodes in a clus-
ter. We prepared four hierarchical data (called ”Data 1”
to ”"Data 4”), where the numbers of leaf-nodes are 9140,
9216, 727, and 729. Sizes and depths of clusters are not
uniform in Data 1 and 3, but they are uniform in Data 2
and 4. We asked examinees to use two versions of the pre-
sented technique: one version supported the LOD control,
and the other did not implement it. This test proved that
LOD control usually works well to assist the quick dis-
cover of specific clusters. It also proved that it is effective
if sizes and depths of clusters are uniform.

S Conclusion

This paper presented hierarchical multi-dimensional
data visualization and its LOD control technique, for vi-
sualization of bioactive chemical data. The technique is an
extension of our own hierarchical data visualization tech-
nique, which represents the hierarchy as nested rectangu-
lar borders. The technique applies grid-like subdivision of
the icons corresponding to leaf-nodes of the hierarchical
data, and represented each dimension of the data as hue of
icons, and the variance of the multi-dimensional values as
saturation and intensity. The LOD control technique uni-
fies icons in lower-level clusters as a larger representative
icon of a higher-level cluster, interlocking to the zoom-out
operations. The paper also presented several examples and
user experiments which indicated the effectiveness of the
presented technique, and discusses the contribution of the
technique for the visualization of bioactive chemical data.

The technique has a limitation on scalability. We exper-
imentally evaluate that it is not always well-readable if the
dimension is more than 20. Also, we experimentally evalu-
ate that it is not always clickable if the number of icons are
more than 5000. We need further evaluation on scalability,
and development of improved techniques.

Unfortunately we do not have larger publishable data,
since we usually test the technique with confidential data of

companies. As a future work, we would like to prepare the
larger publishable data and introduce more experiments.

The presented technique is not essentially limited to the
visualization of bioactive chemical data, and therefore an-
other future work is exploring the usefulness of the tech-
nique in other fields.
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