Isosurface Generation by Using Exterma Graphs

Takayuki [TOH

Koji KOYAMADA

Tokyo Research Laboratory, IBM Japan

Abstract

A high-performance algorithm for generating iso-
surfaces is presented. In this algorithm, extrema points
in a scalar field are first extracted. A graph is then gen-
erated in which the extrema points are taken as nodes.
Each arc of the graph has a list of IDs of the cells that
are intersected by the arc. A boundary cell list ordered
according to cells’ values is also generated. The graph
and the list generated in this pre-process are used as a
guide in searching for seed cells. Isosurfaces are gener-
ated from seed cells that are found in arcs of the graph.
In this process isosurfaces appear to propagate them-
selves. The algorithm wvisits only cells that are inter-
sected by an isosurface and cells whose IDs are included
in cell lists. It is especially efficient when many iso-
surfaces are interactively generated in a huge volume.
Some benchmark tests described in this paper show the
efficiency of the algorithm.

1 Introduction

Three-dimensional numerical simulations have be-
come popular due to the increased computing power

available in engineering and scientific applications.

Three-dimensional measurement has also become
widely used, as a result of new technologies in the

medical field. Volume visualization has consequently
become more important, because it allows users to un-

derstand the results of these simulations and measure-
ments. So that the results can be understood eas-
ily through interactive operations, various methods for

representing spatial numerical data are implemented
in visualization tools. Isosurfaces are expected to be
one of the most effective media for representing scalar

fields.))
An isosurface is defined as a set of points that sat-

isfy the following equation:
S(xayaz) -C= Oa

where S(x,y, z) is a spatial function such as tempera-
ture or pressure, and C' is a constant value.

An isosurface is usually approximated as a set of
triangle facets [1, 2]. It is displayed as a set of edges of
triangles, or as a set of drawn triangles.

In conventional straightforward methods, the cost
of generating an isosurface is estimated at O(n) when

all cells are visited in order to search for intersections
with the surface. These methods may be wastely for

huge volumes, since the number of intersected cells is
regarded as O(n*/?). Here, n means the number of
cells. The high cost may even prevent understanding of

the distribution of the scalar field, because of the long
time taken to generate a surface from a huge volume
of data. Interactive operation (e.g. through a probing
interface [3]) may also be difficult because of the high
cost. In some tools, geometric data on the generated
surfaces are held in storage for prompt repetition of
the continuous display. However, these tools require a
large amount of storage for huge volumes of data, and
therefore some tools may refuse to handle such data.

Various efficient algorithms that eliminate non-
intersected cells have been proposed. These algorithms
are particularly effective for huge volumes. Some ef-
ficient algorithms generate cell lists ordered by cell’s
values as a pre-process [4, 5]. These algorithms have
been also applied to isosurfaces. However, the num-
ber of cells to be visited is regarded as O(n) in their
algorithms. Other such algorithm has been proposed
by Speray and Kennon [6]. Their algorithm eliminate
all non-intersected cells outside the process. However,
their algorithm has been applied only to slice surfaces.
Moreover, some intersected cells may not be visited in
case of non-convex volumes.

2 Related work

2.1

Suppose that the scalar values S(z,y,z) are assigned
at each grid-point, and that the scalar field inside a

cell is linear. Intersections between an isosurface and
the edges of a cell are found by extracting edges for

which the signs of the difference between the given
scalar value and S(z,y,z) at their two ends are dif-
ferent. Several triangles are formed inside the cell by
connecting these intersections. An isosurface is approx-
imated as a set of triangles by the above process for all
cells [1, 2] (see Figure 1).

Triangulation algorithm

)

Figure 1: Triangulation

A set of triangular facets is held in the structure

shown in Figure 2.

typedef struct SURFACE {
int numT; /* Number of Triangles */
TRIANGLE tgl[l; /* Triangle Data */
int numV; /* Number of Vertices */
VERTEX vtx[1; /* Vertex Data */

} SURFACE;

typedef struct TRIANGLE {
int vID[3]; /* VertexIDs */

} TRIANGLE;

typedef struct VERTEX {
float pos[3]; /* PositionData(z,y,z) */
float nml[3]; /* NormalVectorData(z,y,z) */

} VERTEX;

Figure 2: Structure of a surface

In the method proposed by Doi and Koide [2], a
unique vertex identifier process is also proposed. This
process avoids duplication of vertices, and thus reduces
the required storage capacity and the cost of calculat-
ing vertex data.

Generally, cells that are intersected by an isosurface
are only a part of a volume. These straightforward
triagulation algorithms involve wasteful processes for
visiting non-intersected cells.

2.2 High-performance triangulation al-
gorithms

Recently, some efficient algorithms that eliminate non-
intersected cells have been reported.

Giles and Haimes have reported a sorting algorithm
[4], in which two ordered cell lists are formed in a pre-
process by sorting the cells’ maximum values and min-

imum values. The maximum value of the difference
between the maximum and minimum values in a cell
is also calculated. When a scalar value is specified, an

active list that purges all non-intersected cells is cre-
ated by referring to the two ordered lists. Only cells in
an active cell list are then visited in order to generate
a surface.
Gallagher has reported a filtering algorithm [5].
In his algorithm, cells whose IDs are consecutive and
whose minimum values are also close are grouped. All
groups are inserted into span lists that are classified
according to the minimum values. Only cells in the
specified span lists are visited in order to generate an
isosurface.
enerally, number of intersected cells is regarded
as O(n?/?). Therefore, algorithms that visits O(n2/3)
cells are required for high-performance generation. In
Giles’s method, number of visited cells for creating a
cell list is regarded as O(n). In Gallagher’s method,
number of cells in each span lists are regarded as O(n).
Their algorithms may be costly for huge volumes.
Speray and Kennon have reported a propagation
algorithm for generating slice surfaces [6]. Their al-
gorithm does not require any heavy pre-processes. On
the other hand, it uses cell adjacency to propagate itself

through the faces of cells. It requires a data structure
in which the IDs of adjacent cells can be specified from
each cell. For an unstructured volume, a data struc-
ture that has the IDs of adjacent cells for each cell [7]
is required.

Face2(t(i‘ CellB)

Grid point0:(+) |

Queue of celllD

Face3(to CellC Facel(to CellA)

cellA
cellB
Grid point1:(-) Grid point3:(-) celic
: Grid point2:(-)
Face0
INPUT: {+,—,—,-}

OUTPUT: Triangle{(G0,G1),(G0,G2),(G0,G3)}
Faces_AdjacentintersectedCells
{Facel,Face2,Face3}

G 9 s

Figure 3: Propagation

An edge of a triangle exists on the faces of a cell
that have both lower-valued grid-points and higher-
valued grid-points. The adjacent cell that shares the
face is obviously intersected by the slice surface. In
Speray and Kennon’s algorithm, the IDs of adjacent
intersected cells are put into a FIFO queue. IDs are
then dequeued and the cells are then visited in that
order. A set of triangles is efficiently generated by re-
peating this process until the FIFO queue is empty.
This algorithm visits only intersected cells (see Figure
3).

The propagation algorithm is shown in Figure 4.

void PropagateSurface(int seedcellID, float C){
Enqueue the seedcelllD;
while(the queue is not empty){
dequeue a celllD;
Make triangles in the dequeued cell;
Enqueue the cellIDs of
unmarked adjacent intersected cells;
Mark the enqueued cells;

}

for(each vertex) Calculate data;

}

Figure 4: Propagation algorithm

The algorithm requires manual operations to spec-
ify seed cells, and is therefore not useful for visualiza-
tion tools that continuously display surfaces without
any manual specification.

However, it has a great advantage in efficiency, since
it eliminates all non-intersected cells outside the pro-

cess. It is very useful with an intuitive interface that
helps to specify the position or scalar value [3].
Speray and Kennon did not use their algorithm
for generating isosurfaces. We guess that this is be-
cause isosurfaces have a higher possibility of separa-
tion. Their algorithm requires many manual specifica-
tions if the surface is separated into several parts.

3 Algorithm

The method proposed in this section is an expan-
sion of Speray and Kennon’s propagation algorithm.
Their efficient algorithm for generating slice surfaces is
used to generate isosurfaces without any manual spec-

ification of seed cells.
Our algorithm is shown in Figure 5.

void main(){

/* Begin Pre-process */
ExtractExtrema();
GenerateGraph();
GenerateBoundList();
/* End Pre-process */

/* Begin Main-process */
while(1){
Specify the scalar value C;
GenerateSurface((C);

/* End Main-process */

Figure 5: Outline of our algorithm

Here, the function ExtractExtrema(), Generate-
Graph(), GenerateBoundList(), and MainProcess() are
shown in Figures 7, 12, 14, and 16.

As a pre-process, extrema points in a scalar field are
extracted, and then connected by a graph whose arcs

have a cell list that contains the IDs of cells intersected
by the graph. At the same time, a boundary cell list

ordered according to scalar value is generated. Seed
cells can be found in the cell list of arcs or boundary
cell list, without any manual specification. Isosurfaces
propagate themselves, starting from the seed cells.
Our algorithm is based on the following rule:
Rule: Any given closed isosurface is intersected by at
least one arc of a graph in which all extrema points are
connected by arcs. (unless there is no interior point in
each area, or the scalar field is flat in each area).
Any given open isosurface is intersected by at least one
boundary cell.

3.1

In this paper, extrema points are defined as grid-points

whose scalar values are maximum or minimum in all
cells that share them.

Extracting extrema points

The extrema points are held in the structure shown
in Figure 6.

typedef struct EXTRM-PNT {
int gID;
/* grid-pointID of the extrema point */
int flag;
/* flag for checking its connectivity */
} EXTRM-PNT;
typedef struct EXTRM-LST {
int numE;
/* Number of extrema points */
EXTRM-PNT extrm[];
/* Extrema point data */
} EXTRM-LST;

Figure 6: Structure of an extrema point

To extract extrema points, the scalar values of all
grid-points for each cell are compared. All grid-points
except the maximum-valued grid-points are marked as
”Not maximum.” Similarly, all grid points except the

minimum-valued are marked as “Not minimum.’
termediate valued grid-points are marked as both. Af—

ter values in all cells have been compared, only grid-
points that have either a “Not maximum” or “Not min-
imum” mark are extracted as extrema points.

The algorithm for extracting extrema points is
shown in Figure 7.

void ExtractExtrema(){

for(each cell){
mark ‘‘Not maximum’’ valued grid-points;
mark ‘‘Not minimum’’ valued grid-points;
}

}

for(each grid-point){
Insert the ID into the extrema list

that is not marked

either ‘‘Not maximum’’ or ‘‘Not minimum’’;

Figure 7: Algorithm for extracting extrema points

3.2 Generating an extrema graph

In this paper, extrema graphs are defined as a group
of arcs that connects two extrema points.
The graph is held in the structure shown in Figure

To generate an arc, an extrema point is first chosen
as a “start” point. The other extrema point is then
chosen as a “goal” point. Here, we assume that the
group of arcs that minimize the total cost of a graph is
generated when closer extrema points are connected by
a graph. (Here the cost of a graph means the number
of cells inserted into the list.) In accordance with this

typedef struct ARC {
int eID[2];
/* IDs of two extrema points */
float value[2];
/* The mazimum value and minimum value */
int numC;
/* Number of cells included in the cell list */
int cID[];
/* Intersected cell list */
} ARC;

typedef struct GRAPH {
int numN;
/* Number of nodes (=extrema points) */
int nodel[];
/* Grid-pointID of nodes (=extrema points) */
ARC arc[];
/* arc data */
} GRAPH;

Figure 8: Structure of a graph

assumption, several closer extrema points are enqueued
as a candidate of the “goal” point.

One of the closer extrema points is selected as a
“goal” point, and the vector of the arc between the
start point and the goal point is then calculated. Start-
ing from a cell that includes the start point, the arc is
traversed and the adjacent cell that is intersected by
the arc is then visited. This process is repeated un-
til it arrives at the cell that includes the goal point.
Here, the maximum and minimum values are updated
by the scalar value of each grid-point during visits to

cells. The IDs of the visited cells are inserted into the
cell list of the traversed arc. the line goes outside

the volume, the traverse is terminated and a similar
traverse is started after selection of the next-closest
extrema point as a “goal” point (see Figure 9).

arc.elD[2]={E0,E1}
arc.cID[..]=
{...C0,C1,C2,C3,C4...}

Figure 9: Traversing along an arc

If no extrema points are connected with the start
point, the closest extrema point among those whose
flags’ values are not equal is chosen as a goal point.
Starting from a cell that includes the start point, the
adjacent cells that share the face whose sum is min-
imum are visited in order. For each visited cell, the
distance to the goal point from each grid-point is cal-

culated. The sum of the distance values is then cal-
culated for each face of the visited cell. This process

is repeated until it arrives at a cell that includes the

goal extrema point. The IDs of the visited cells are in-
serted into the cell list of the arc (see Figure 10). This
distance-based process necessarily connects the chosen
extrema points, but it is not always efficient, because
of the cost of calculating the distance for each grid-
point. Therefore it should be the second process after
traversal of straight arcs.

<from EO to E1>

1

Figure 10: Traversing by calculating distance

10

1 11 11
1\\1\ 11 10

.eID[2]={E0,E1]
The distance to E1 e ! }

arc.cID[..]=
{..C0,C1,C2.}

In our implementation, each extrema point has a
flag to be checked for connectivity. At first, the flag of
each extrema point is substituted with its grid-pointID.
When an extrema point is connected with another ex-
trema point, the values of the two flags are compared.
The flag that has the larger value is substituted with
the smaller value. In addition, flags of other extrema
points that have the larger value are substituted with
the smaller value. When the start point is chosen, an
extrema point whose flag has an equal value to the flag
of the start point is not chosen as a goal point (see
Figure 11).

Figure 11: Checking connectivity of extrema points

The algorithm for generating an extrema graph is
shown in Figure 12. Here, “adjcell” means an adjacent
cell.

void GenerateGraph(){
for(each extrema i) extrm[i].flag =
for(each extrema n) {
for(each other extrema i) {
if(extrm[n] .flag != extrm[i].flag) {
if(extrm[i] is NOT too far) Enqueue extrm[i];
}
}

while(the arc has not been connected) {
Dequeue an extrema extrm[m];
if (MakeGraphl(extrm[n], extrm[m]) ==
break;

extrm[i] .gID;

SUCCESS) {

if (the extrema-points-queue is empty){
MakeGraph2(extrm[n], extrm[m]); break;

}
}

for(each extrema i)
if (extrm[i].flag == extrm[m].flag)
extrm[i] .flag = extrm[n].flag;
}
}

int MakeGraphl(extrmA, extrmB){
VisitCell = A cell that includes extrml;
while(1){
arc.cID[(arc.numC++)] = VisitCell;
Update arc.value[0] and arc.value[l];
if(VisitCell includes extrmB) return(SUCCESS);
VisitCell = the adjcell that intersects the arc;
if (VisitCell = NULL) return(FAILURE);
}
}

void MakeGraph2(extrmA, extrmB){
VisitCell = A cell that includes extrml;
while(1){
arc.cID[(arc.numC++)] = VisitCell;
Update arc.value[0] and arc.value[l];
if (VisitCell includes extrmB) return;
VisitCell = the adjcell shares the nearest face;

Figure 12: Algorithm for generating graphs

3.3 Generating boundary cell lists

In this paper, boundary cells are defined as a group of
cells that have faces not connected to an adjacent cell.
First, maximum and minimum values are defined for
each boundary cell. Two ordered lists are then gener-
ated by using minimum and maximium values of the
cells based on a quick-sort algorithm. These lists have
pointers to each boundary cell data.

Boundary cells are held in the structure shown in
Figure 13.

The algorithm for generating boundary cell lists is
shown in Figure 14.

typedef struct BCELL {
float min; /* minimum value */
float max; /* mazimum value */
} BCELL;
typedef struct BLIST {
int numB; /* No. of boundary cells */
BCELL bcelll[];
BCELL xbcell-min[]; /* Ordered by minimum values */
BCELL *bcell-max[]; /* Ordered by mazimum values */
} BLIST;

Figure 13: Structure of boundary cell lists

void GenerateBoundList(){
for(each boundary cell cIDJ[i]) {
define cID[i].max and cID[i].min

Generate a minimum value-based boundary cell list;
Generate a maximum value-based boundary cell list;

}

Figure 14: Algorithm for generating boundary cell lists

3.4 Generating isosurfaces

Our algorithm generates an isosurface by traversing an
adjacency cell list, starting from seed cells. The main
point of our algorithm is to extract seed cells automat-
ically and efficiently. An isosurface is generated when
a scalar value is specified. Seed cells are searched for
by traversing a boundary cell list and all arcs of the
extrema graphs, in order to propagate an isosurface.
First, boundary cells are visited in order of the

minimum-value-based cell list until the minimum value
becomes higher than the given value. If the maximum

value of the visited cell is higher, the cell is regarded as

a seed cell. A maximum-value-based cell list can also
be usede for visiting cells in order.

Next, seed cells are searched for by traversing arcs
of the extrema graphs The specified value and the

maximum and minimum values of each arc are com-
pared. If the specified value lies between the maximum

and minimum values of an arc, all the cells in the list

are yisited in order.))
hen an extracted seed cell is unmarked, its ID

is put into the FIFO queue and an isosurface is then
generated (see Figure 15).

This process is shown in Figure 16. Here, the func-
tion PropagateSurface() is shown in Figure 4.

Here, the number of intersected cells is regarded
as O(n?/?). The number of cells in arcs of extrema
graphs is regarded as O(n'/?). The number of cells in
boundary cell lists is regarded as O(n?/?). Therefore,
the cost of generating an isosurface in our algorithm is
estimated as O(n?/?). Our algorithm is thus especially
efficient for huge volumes.

<e.g. Isosurface S(x,y,z) — 4 = 0>

N A

Figure 15: Searching for seed cells

void GenerateSurface(float C){
for(each cell bcell[i] in the boundary cell list) {
if(beell[i].min < C && beelli].maz > C &&
beelli] is unmarked) {
PropagateSurface(beell[i],C);

for(each arc){
if (arc.value[l] < C < arc.value[0]) {
for(each unmarked cell in the arc){
if(cell ¢ID[i] is intersected)
PropagateSurface(c¢ID[i],C);
}

}
}
}

Figure 16: Algorithm for generating isosurfaces

4 Benchmark tests

Our method has been implemented and tested on
an IBM PowerStation RS/6000 (Model 560). An ex-
ample of an extrema graph is shown in Figure 17, and
18, where white ”+” marks show extrema points. An
example of isosurfaces are shown in Figure 19, and 20.

Here we analyze our algorithm and the straightfor-
ward algorithm [2] by comparing their performance. In
benchmark tests, a series of 20 isosurfaces were gener-
ated for each volume. The results for example unstruc-

tured volumes are as follows. .
The size of the volumes are shown in Table 1.

Table 1: Size of volume

Dataset No. 1 2 3 4
Nie 20736 | 61680 | 346644 | 557868
Ny 2048 5432 16908 97473
Ngp 4002 | 11624 | 62107 17876
where

e N;. is the number of tetrahedral cells (including
boundary cells).

e N is the number of boundary tetrahedral cells.
e Ny, is the number of grid points.

The cost of pre-processing is shown in Tables 2.

Table 2: Performance in the pre-process

Dataset No. 1 2 3 4
Tpe 0.541 | 1.382 | 6.290 | 9.719
Tpe 0.062 | 0.166 | 0.600 | 4.151
Tpp 0.081 | 0.275 | 1.138 | 1.359
N, 21 46 135 540
N, 468 1048 | 3250 | 10210
where

o T, is the total time for extracting extrema points.

e T, is the total time for connecting extrema by a
graph.

e T, is the total time for creating ordered boundary
cell lists.

e N. is the number of extrema points.
e N, is the number of cells in the list of arcs.

The above results show that the simple process for
extracting extrema points is much more costly than
other processes, since its cost is estimated as O(n).

The cost T of dataset No.4 is much higher that
those of other datasets. We suppose that this result is
due to the cost for selecting close extrema points, since
its cost is estimated as O(n?). If the scalar value is
noisy and there are enoumous extrema points, the cost
Tp. may be much higher than that of dataset No.4.

The cost of the main process is shown in Tables 3,

Table 3: Performance in the main process

Dataset No. 1 2 3 4
Ty (sec.) 0.008 0.088 0.248 0.197
Top (sec.) 0.019 0.032 0.091 0.144
Tt (sec. 1.471 1.748 4.495 8.331
Tno (sec.) 0.567 0.693 1.690 3.114
T, (sec.) 2.065 2.561 6.524 11.786
T (sec.) 5.068 11.416 63.113 103.072

Ri» 2.454 4.458 9.674 8.745

N¢g 3063 4774 15659 14196

Ng; 51357 62377 148836 277457

Ne. 414720 | 1233600 | 6932880 | 11157360

N, 34921 33874 103742 185622
where

o T, is the total time spent searching for seed cells in
arcs.

o T, is the total time spent creating an active bound-
ary cell list.

e T, is the total time spent forming triangles.

e T, is the total time spent calculating vertex data.
e T is the total time of our method.

e T5 is the total time of the conventional method.

® Ri> is the ratio of T5 to T}.

e N4 is the number of cells visited in searching for seed
cells.

e N.; is the number of cells intersecting isosurfaces.

o .. is the number of cells visited in the conventional
method.

e NN, is the number of vertices of surfaces.

These results show that Rj» is better for larger
volumes than for smaller volumes, indicating that our
method is especially efficient for large volumes.

The total cost of an extrema graph is not always
minimum, and optimization of the graph remains as
future work. However, we do not expect such optimiza-
tion to contribute significantly to reducing the cost,
because the cost of searching for seed cells in the arcs
T'rng is so tiny.

Next, we will discuss the cost of each routine. In
our method, the total time is estimated as

Ty =t1(Npe + Ny) + (t2 + t3)Nep + t5 Ny,
In the straightforward method,
Ty = tsNee + t4Nep + t5N,.
where
ts = Tv/N,.

The costs are shown in Table 4.

Table 4: The costs of each variables

t; (sec.) | 3.648 x 1076
ty (sec.) | 8.233 x 1076
t3 (sec.) | 2.161 x 1073
ty (sec.) | 2.920 x 1073
ts (sec.) | 1.744 x 1075

where
e ¢t is the cost for searching for seed cells.

e t» is the cost of checking the sign of the difference
between the given scalar value and the value of each
grid-point.

e t3 is the cost of making triangles and enqueueing the
IDs of unmarked adjacent intersected cells, in our
method.

e t4 is the cost of making triangles in the straightfor-
ward method.

e t5 is the cost of calculating the position and normal
vector for each vertex of triangles.

To our surprise, t3 is lower than ¢4, even though it
includes the cost of enqueueing and marking cells in
our method. We suppose that this result is due to the
efficiency of the vertex identifier process. We imple-
mented the process by referring to the vertex data in
order of newness. We suppose that the vertex identifier
process in the propagation algorithm is more efficient,
since the newest triangle has the tendency to share a
newer vertex. The sorting algorithm [4] and the fil-
tering algorithm [5] do not use adjacency such as in
the straightforward method, and therefore these ver-
tex identifier processes are not seemed so efficient as
those in the propagation method.

5 Conclusion

In this paper we have proposed a high-performance
algorithm for generating isosurfaces, by using extrema
graphs and ordered boundary cell lists as a guide to
search for seed cells. Our algorithm especially efficient
for huge volumes, since the number of visited cells is

regarded as O(n?/3).

Acknowledgements

We would like to thank K. Shimizu, manager of
Advanced Graphics at the Tokyo Research Laboratory,
IBM Japan, for his encouragement in this work. We
would also like to thank M. Makino, assistant professor
of Chuo university, for helpful discussion about scalar
fields and extrema points.

References

[1] W. E. Lorensen and H. E. Cline: “Marching
Cubes: A High Resolution 3D Surface Construc-

tion Algorithm,” Computer Graphics, Vol. 21, No.
4, pp. 163-169, 1987.

[2] A.Doiand A. Koide: “An Efficient Method of Tri-
angulating Equi-valued Surfaces by Using Tetra-
hedral Cells,” IEICE Transactions, Vol. E74, No.
1, pp. 214-224, 1991.

[3] K. Koyamada and T. Itoh: “A Measurement Sys-
tem for 3-D Numerical Simulation Results,” TPSJ
Technical Report, 93-HPC-48, 1993.

[4] M. Giles and R. Haimes: “Advanced Interactive
Visualization for CFD,” Computer Systems in En-
gineering, Vol. 1, No. 1, pp. 51-62, 1990.

[5] R. S. Gallagher, “Span Filtering: An Optimiza-
tion Scheme for Volume Visualization of Large Fi-
nite Element Models,” IEEE Visualization '91, pp.
68-74, 1991.

[6] D. Speray and S. Kennon, “Volume Probe: In-
teractive Data Exploration on Arbitrary Grids,”
Computer Graphics, Vol. 24, No. 5, pp. 5-12, 1990.

[7] K. Koyamada, “Visualization of Simulated Air-
flow in a Clean Room,” IEEE Visualization ’92,
pp. 156-163.

Figure 17: An extrema graph Figure 19: Generating isosurfaces

Figure 18: An extrema graph (dataset No. 1) Figure 20: Generating isosurfaces (dataset No. 1)

