
Single Sign On Architecture with Dynamic Tokens

Fumiko Satoh, Takayuki Itoh
IBM Research, Tokyo Research Laboratory

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa, Japan�
sfumiko, itot � @jp.ibm.com

Abstract

Single Sign On (SSO) is a useful technology that allows
users to skip bothersome authentication processes during
accesses to multiple services. It is particularly useful for
services for mobile terminals because of their limited re-
sources and interfaces. Some existing SSO mechanisms
only verify static data such as IDs and passwords. However,
we consider that it will be quite useful if they could deal with
dynamic data. We propose a new SSO architecture that uses
“Dynamic Token”s that describe dynamic data such as a
payment history. The architecture introduces an additional
server, named “Circulator”, which manages the latest to-
ken values to service providers. Accordingly, the providers
can correctly verify the token values sent from clients. This
paper proposes an efficient algorithm for Circulator to ef-
fectively visit the providers. The result of our experiment
shows the efficiency of the algorithm.

1 Introduction

Nowadays, various mobile services can be accessed via
the Internet. In many current systems, providers usually
have independent client authentication systems and data is
not shared among them. When a client is going to access
multiple services, it has to make registrations appropriately
and chooses a proper identification to access each service.
In particular, the mobile terminals are not easy to input iden-
tification information many times. Hence clients might feel
such independent authentication is bothersome. Addition-
ally, if a client wants to use a commercial service, an extra
payment process is required. A Single Sign On (SSO) archi-
tecture can solve the problem where a client needs to have
several identifications for each service. Some SSO architec-
ture have became common already, such as Microsoft Pass-
port [1]. In these architectures, it is used a static token, such
as IDs and passwords, for client authentication. Besides,
it needs an external process when service providers require
information for payments, such as credit card numbers. For

inexpensive services, such as “pay per click” or “pay per
view”, the micropayment systems may be preferred over
credit card systems. PayWord [2] is one of the current mi-
cropayment architectures, and it is very useful comparing it
to a credit card payment. The original PayWord architec-
ture is only available for a specific service and cannot be
used with SSO. The extended PayWord architecture [3] has
been proposed which can be used among several services.
However it is not suitable because it needs many digital sig-
natures, which are too costly for mobile terminals. This
paper proposes a new SSO architecture with “Dynamic To-
ken”s which simultaneously deal with the authentication of
clients and the verification of their dynamic data such as
payment histories. Additionally, an additional server named
“Circulator” is introduced behind providers. Consequently,
the perfornace of a client authentication process is enhanced
comapred to a current SSO architecture. The basic frame-
work of this architecture is shown in Figure 1.

 Service
Provider A

 Service
Provider Z

Client

Circulator

- verify tokens

- authenticate clients
- collect latest tokens

Security Token Service

.....

- certificate clients

Figure 1. The basic framework of the pro-
posed architecture

The particular terms in this paper are defined as follows:� Dynamic Token: A security token which is issued by
Circulator. It is used for the client authentication and
verification. Circulator issues a Dynamic Token as a
sequence of token values (�������
	�������������), and a client

uses these values in sequential order. Each token value
can be used only one time, so it is called a Dynamic
Token. It is necessary to know the value of � ��� � to
check whether the token � � is valid.� Circulator: An additional server which is placed be-
hind providers. Its roles are issuing Dynamics To-
kens for clients, collecting used token values from
providers, and sending the history of used token val-
ues to providers.� Security Token Service: A third party certification or-
ganization. Circulator asks it to provide certificates of
unknown clients.� Certification: Issue of a certificate, such as an X.509
Certificate. We assume that Circulator trusts this cer-
tificate.� Authentication: Validation of clients. When the first
access from a client, it is authenticated by verifying the
signature on the token value with the client certificate.� Verification: Validation of a current token value. In this
architecture, it is used as the alternative of the client
authentication after the client is once authenticated.

In this paper, Section 2 describes the proposed architec-
ture, and Section 3 shows an efficient circulation algorithm.

2 New SSO architecture

2.1 Outline of the proposed architecture

As mentioned in Section 1, the proposed SSO architec-
ture uses a Dynamic Token, which is a sequence of token
values (� �����
	�� � ������� �). As a result, the authentication of
clients and the verification of the token values are simulta-
neously deal with.

This proposed architecture introduces Circulator. The
main roles of Circulator are issuing Dynamic Tokens for a
certificated client by the Security Token Service and circu-
lating among providers. Visiting providers by Circulator, it
collects the histories of used token values and sends the lat-
est used token value for each client to providers. The latest
used token value is then used for the next client authentica-
tion by the providers.

We assume that a client contacts Circulator to issue its
Dynamic Token in the first place. If Circulator does not
have a certificate for the client, it asks to the Security Token
Service to get a client certificate such as an X.509 Certifi-
cate. Receiving certificate and trusting the client, Circulator
issues a Dynamic Token, sends it to the client and caches it
for itself.

When the client accesses to a provider, it sends the first
token value � � with the signature. The provider sends � �
to Circulator for requesting the client authentication. Here,
Circulator should cache the certificate and the Dynamic To-

ken of the client. Circualtor can authenticate the client by
verifying the signature on � � with the certificate, and verify
� � by using the cached Dynamic Token. When the client
authentication is finished, the circulator sends the client cer-
tificate to the provider. The the provider evaluate the ob-
tained certificate whether the client is allowed to receive a
service. Finally, the provider can provide the service to the
client and caches the certificate. The client signature is only
required at the beginning. Because the token value of the
client and the certificate can be mapped in the first access,
the provider can authenticate the client by itself in the next.

Due to the cache, the provider can verify the client to-
ken value � 	 by itself when the client accesses the same
provider again. Hence we can assume that the client can be
authenticated by the verification of the token value. In this
case the provider can respond without establishing an extra
connection to Circulator, shown as “Model 1” in Figure 2.
Even if a client accesses provider B with � � after accessing
provider A with � 	 , provider B can authenticate the client
by itself if it knows a previous used token value � 	 .

On the other hand, there are some cases that the provider
should connect to Circulator to ask for the client verification
and authentication. One of the cases is shown as “Model 2”
in Figure 2. This case may happen when the used token val-
ues cached by the provider might be obsolete, or the client
might tamper its token value. If the authentication and ver-
ification by Circulator fails, it is required three connections
for the client authentication, shown as “Model 3” in Fig-
ure 2. In this case, there are two possible situations: Both
used token values cached by the provider and Circulator are
obsolete, or the client might tamper its token value. Since
Circulator knows which provider is holding the latest used
token value, it can collect the latest one from that provider.
Using this collected token value, Circulator can authenticate
the client at last.

To be applied “Model 1” in as many cases as possible,
Circulator visits providers to collect and send the latest to-
ken values for each Dynamic Token. It may be possible to
occur “Model 3”, but we found that ‘Model 3” was very rare
in our experiments.

2.2 Applying to a payment process

By using PayWord [2] as a Dynamic Token, the proposed
architecture realizes SSO with a micropayment mechanism.
PayWord is a set of sequential numbers generated by a one-
way hashing function. It can be used as a Dynamic To-
ken: � � = ��� , � 	 =(

� � ���). If the provider knows �	� for
the client already, the provider can verify the client which
accesses with �
��� � . When a provider has already received
a client certificate and authenticated with the signed token
value, then it is possible to replace the authentication of the
client by the verification of the token values. The payment

Circulator

Client

Provider A

Client

Provider A

Circulator

Client

Provider A Provider B

 Model 1
(1 connection)

 Model 2
(2 connections)

 Model 3
(3 connections)

token
verification
OK

token
verification
NG

client
authentication
OK

token
verification
NG

collect latest
used token

client
authentication
NG

(1) (1)

(2)

(1)

(2) (3)

Figure 2. Three models of the proposed SSO

histories by PayWord are treated as the used token values in
this case.

The combination of the proposed architecture and Pay-
Word realizes a reasonable system for micropayment and
SSO for mobile terminals. PayWord is suitable for mobile
terminals because of using a simple one-way hash func-
tion, which is much faster than the signature process. Also,
this architecture realizes the service by “Model 1” in many
cases, hence it saves the time to get services for clients.

Applying PayWord, we need to consider the security
properties against attacks by a third party. It is described
as follows:� Eavesdropping: Even if the token value is stolen during

the connection, the stolen token cannot be used the next
time. The thief cannot calculate the next value by itself.� Tamper: Even if a tampered token value is sent to a
provider, the provider will recognize it when the veri-
fication of the token value fails.� Spoofing: The same sequence of a Dynamic Token
cannot be generated by a third party. Also, a spoofing
client cannot be authenticated because it cannot gener-
ate the proper signature value in the first access. When
a spoofing client accesses with a stolen token, this cor-
ruption can be found by Circulator. However, it is im-
possible to identify the spoofing client. This property
depends on PayWord, it is no matter for the micropay-
ment.

The security property against a client’s corruption is as fol-
lows:� Using the same token values with two providers: If Cir-

culator has not completely finished sending to the latest
used token values to the providers, the client might use
the same token with multiple providers. Even if the
client can get service at that time, this corruption will
be tracked after Circulator collects the histories of the
used token values. The provides can charged the client
for the extra payments.

This paper assumes that Circulator and providers trust each
other, and the providers’ corruptions is not be considered.

3 Circulation algorithm

3.1 Rules of the circulation algorithm

Another architecture is possible for SSO using Dynamic
Tokens by introducing a proxy server between clients and
providers [4]. The proxy server can verify the token val-
ues sent from clients, before connecting them to providers.
We call the architecture a “proxy-based” architecture in this
paper. This architecture always needs two connections: the
client to the proxy, and the proxy to the provider. An advan-
tage of our architecture against a proxy-based architecture is
the smaller number of connections for a client. It is archived
by using the efficient circulation algorithm described in this
section.

Even if Circulator uniformly visits providers in order,
our experiment shows that the new architecture needs less
than two connections for the client authentication on aver-
age. It means that it is better than a proxy-based architec-
ture. However, if Circulator visits the providers using in-
telligent algorithms, the providers can effectively share the
histories of token values. As a result, the number of connec-
tions can be further reduced. Circulator calculates scores for
each provider based on certain rules. It chooses the provider
that has the highest score to visit. This scoring rules are im-
portant to effectively share the latest token values among
multiple providers using this architecture.

There are two rules of the circulation. The first rule is
visiting the providers which have not been visited for a long
time (Rule#1). The second is visiting popular providers
which may have a lot of the latest token values (Rule#2).
We applied scoring functions based on these rules as fol-
lows. The score of provider � , � � , is calculated by the func-
tion: � �������	��
 ������	� � . Here, ��
 � is the time during
which the provider has not been accessed by the circulator,
applied according to Rule 1. The value � � is the number
of accesses to the provider � from all clients, applied ac-
cording to the Rule 2. Circulator basically calculates the
scores of each provider for every visit, however, several
variations are possible. For example, Circulator can choose
some providers at the same time, and visit them without cal-
culating the scores again.

3.2 Algorithm experiment

We implemented and tested the scoring algorithm as fol-
lows. In our test scenario, we assumed multiple clients
which have various characters, multiple providers which
have various types of services, and one circulator. The
details of the assumption in this experiment are described

Circulator frequency
2.5% 5% 10% 15% 20%

uniform 2.50 2.31 1.91 1.41 1.17
score-based 2.34 1.99 1.52 1.25 1.17

Table 1. The results of the average number of
connections in “uniform” and “score-based”

Figure 3. The results of the average number of
connections in “uniform” and “score-based”

in [5]. Our experiment counts the number of connections
from clients to providers for each client authentication pro-
cess. Note that this proposed SSO architecture is suitable
for mobile terminals, hence the performance from the mo-
bile clients is the most important topic. It is differ from
the whole performance of this architecture. This experi-
ment confirms that the proposed architecture requires fewer
connections from the client compared to the existing proxy-
based architecture. The total number of connections which
is included that of the providers and Circulator, might be
increased, although, this is out of the scope this paper.

The parameters in our experiment is as follows: 200
clients, 30 providers and each client makes 50 requests to
various providers. We tested using two parameter sets in
the scoring function. One set of parameters is where � � � ,
� � �

, named “uniform”. It means that Circulator uni-
formly visits the providers. Another set is � � � ��� , � � � ��� ,
named “score-based”. In this case, Circulator visits high-
score providers more frequently. We tested five frequencies
for Circulator. The frequencies are described as the ratio
of the number of Circulator visits to providers, to the av-
erage number of client accesses to the providers. We used
the ratios of 2.5%, 5%, 10%, 15%, and 20%. We tested
the proposed architecture with the above parameters, and
compared the average number of connections. The aver-
age numbers of connections in this experiment are shown
in Table 1 and Figure 3. The experiment shows that the
average number of connections was reduced to less than 2
when Circulator visit frequency. In these case, the proposed

architectre is better than the proxy-based architecure. The
average numbers between the configurations “uniform” and
“score-based” are almost equal and very close to 1 in the
case that the Circulator frequency is 20%. Even if the fre-
quency of Circulator visits is not enough, the “score-based”
configuration shows better result. The result of our exper-
iment clearly shows that the effective configuration of the
circulation is very important.

This architecture performance is very dependent on the
character of the services. This architecture will achieve bet-
ter performance than the current architecture for a service
which is often accessed by a specific client, such as mail
services,

4 Conclusion

This paper proposed a new architecture of SSO introduc-
ing Dynamic Tokens and Circulator. It makes possible to
reduce the number of connections for client authentication.
The paper also proposed a scoring algorithm so that Cir-
culator effectively visits providers to manage the Dynamic
Tokens. Our experiment confirmed that the algorithm and
its effective configuration contributed to reduce the average
number of connections. The following issues are possible
future works of our study:� Experiments with larger numbers of clients and

providers.� Optimization of parameters in the circulation algo-
rithm.� Consideration of multiple Circulators for performance
improvement.

References

[1] Microsoft. .Net Passport.
http://www.microsoft.com/net/services/passport/.

[2] Ronald L. Rivest and Adi Shamir. PayWord and Mi-
croMint: Two Simple Micropayment Schemes. In
Security Protocols Workshop, pages 69–87, 1996.
http://citeseer.nj.nec.com/rivest96payword.html.

[3] Manho Lee and Kwangjo Kim. A Micro-
payment System for Multiple-Shopping.
http://citeseer.nj.nec.com/lee02micropayment.html.

[4] Japanese patent. JP2002-288139A.

[5] Fumiko Satoh and Takayuki Itoh. Single Sign On Ar-
chitecture with Dynamic Tokens. IBM Research, TRL
Research Report, RT0542.

