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ABSTRACT 

A new technique for automatically generating anisotropic quadrilateral meshes is presented in this paper.  The inputs are (1) a 2-
D geometric domain and (2) a desired anisotropy – defined as a metric tensor over the domain – specifying mesh sizing in two 
independent directions.  Node locations are obtained by closely packing rectangles in accordance with the inputs.  These nodes 
are then connected using anisotropic Delaunay triangulation that takes into account the desired anisotropy.  The obtained 
triangular mesh is converted into a quadrilateral mesh using mesh conversion templates.  The novelty of the method is that 
closely packed rectangles resemble a pattern of Voronoi polygons corresponding to a well-shaped quadrilateral mesh.  The result 
is a high quality mesh that conforms well to the input.  As an application, this method is used to generate a mesh to solve a steady 
state heat transfer problem. 
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1. INTRODUCTION 

Mesh generation is used in a variety of areas like finite 
element method and computer graphics.  Today, such 
computational techniques form an integral part of design and 
analysis.  Mesh generation using quadrilateral elements is 
computationally expensive due to constraints on element size 
and shape, mesh directionality control and adaptive 
remeshing capabilities.  The problem is further restricted by 
specifications on anisotropy.  Therefore a high quality, 
automatic mesh generation algorithm can increase 
productivity by reducing the time spent on generating the 
mesh. 

This paper describes a new computational method by which a 
two-dimensional domain can be meshed using anisotropic 
quadrilateral elements.  It has been shown that quad elements 
perform better in the FEM analysis of plane stress [1].  They 
are also preferred in computational fluid dynamics, sheet 
metal bending, automobile crash simulation.  In addition, an 
anisotropic mesh aligned to specific directions, is better in 
terms of computational cost and solution accuracy when the 
physical phenomena being analyzed has a strong 
directionality or when the material properties are anisotropic.  
For example analyses involving shock propagation, or 
analysis of fiber-reinforced glass or plastics. 

The method used is an extension of the bubble mesh method 
[2, 3] in which bubbles or spheres were packed to obtain 
node locations suitable for an isotropic triangular mesh.  
Later ellipsoids were packed to generate anisotropic 
triangular meshes[4].  Square packing was done to obtain 
isotropic quadrilateral meshes[5].  In the current method, 
rectangular cells are packed to obtain the desired anisotropy.  

This method is readily extensible to three dimensions by 
packing parallelepipeds instead of rectangles. 

The advantage of this approach is that node spacing and mesh 
directionality can be precisely controlled, independent of the 
boundary edges.  This can be important to capture physical 
phenomena like high stress gradients in stress analysis or 
shocks in fluid flow.  Locally, the size and orientation of 
rectangles are adjusted based on the input sizing and 
direction information.  This results in a quadrilateral mesh 
that is anisotropic, well-shaped and well-aligned. 

Another advantage is that adaptive remeshing is not 
computationally expensive because dynamic simulation can 
be continued from the existing mesh, instead of starting from 
scratch.  This is an advantage of using the bubble mesh 
technique of physically based dynamic simulation for close 
packing. 

As a demonstration of the capabilities of this technique, a 
steady state heat transfer problem is solved using a mesh 
generated in this way.  Since the central theme of this paper 
is anisotropic quadrilateral mesh generation, this is described 
separately in section 6. 

2. PROBLEM STATEMENT 

The problem addressed in this paper can be stated as follows 

Given: 

1. a two dimensional geometric domain 

2. a desired mesh anisotropy - element sizing and mesh 
directionality given as a 2x2 tensor field M 

Obtain: 



a well-shaped, graded, anisotropic quadrilateral mesh, 
conforming to the input anisotropy – specified using node 
spacing and mesh directionality. 

3. PREVIOUS WORK 

There have been several reviews of mesh generation 
algorithms.  [6-9].  Recently there have been surveys of mesh 
generation algorithms and software using them, published on 
the world wide web [10-12]. 

Quadrilateral meshing has been implemented using a variety 
of techniques.  One of the popular methods is node placement 
followed by connection.  This is popular because of the 
existence of a robust scheme for connection called Delaunay 
Triangulation.  The obtained triangular mesh is converted 
into a quadrilateral mesh.  Many such conversion methods 
have been proposed [13-16].  A CSG based approach for 
node placement was proposed by Lee [17, 18].  In paving 
[19], quadrilateral elements are created one by one, starting 
from the boundary.  The Q-Morph algorithm proposed by 
Owen [20] works similarly, converting a triangular mesh to a 
quadrilateral mesh starting from the boundary.  In these 
advancing front methods, mesh directionality cannot be 
controlled independent of the boundary, which may be 
needed to reflect load conditions or material properties. 

Castro-Diaz et al.  showed the use of a metric tensor to 
improve the quality of adapted meshes in flow computations 
[21].  Borouchaki et al.  demonstrated the use of a metric 
tensor to generate an anisotropic triangular mesh [22].  
Bossen and Heckbert used a 2x2 metric tensor to generate an 
anisotropic triangular mesh using a system of interacting 
particles [23].  Shimada et al. used ellipse packing to obtain 
anisotropic triangular meshes [4].  The biting ellipses scheme 
[24] uses a method that combines paving and packing to 
generate an anisotropic triangular mesh.  Though this method 
has a theoretical time bound for convergence, it takes a long 
time for meshing even simple geometries. 

This work draws on both isotropic quadrilateral meshing 
techniques and anisotropic triangular meshing methods and 
incorporates new techniques to realize efficient, high-quality 
anisotropic quadrilateral meshing. 

4. ANISOTROPIC QUADRILATERAL       MESH 
GENERATION 

4.1 Outline of Technical approach 

The anisotropic quadrilateral meshing problem is solved in 
the following way.   

Step 1 :  Place rectangular cells on the all vertices 

Step 2 :  Pack rectangular cells on the all edges 

Step 3 :  Pack rectangular cells on the faces 

Step 4 :  Place nodes at the center of rectangles 

Step 5 :  Generate triangular mesh topology using anisotropic 
Delaunay Triangulation 

Step 6 :  Selectively combine pairs of triangles to obtain a 
quad-dominant mesh 

Step 7 :  Use mesh conversion templates to obtain an all-quad 
mesh 
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Figure  1    The mesh generation process 

 

Figure 1 shows this step by step process.  The first three steps 
generate suitable node locations by closely packing 
rectangles, which are in accordance with the given input.  
This is done because packed rectangles mimic a pattern of 
Voronoi polygons for a well-shaped quadrilateral mesh 
(figure 2).  The sizes and directions of the rectangles are 
adjusted based on the given mesh sizing and mesh 
directionality information. 



 
Triangle Mesh           Voronoi Polygons       Packed Bubbles 

 

 
 

Quadrilateral Mesh       Voronoi Polygons       Packed 
Rectangles 

Figure  2    Voronoi Polygons and Mesh 

Some of the issues that arise are  

1. What are optimal locations of rectangles 

2. How many rectangles are needed to fill the domain 

3. How to modify Delaunay triangulation to produce 
anisotropic triangles 

4. How to convert the obtained rectangle packed triangles 
to quads. 

For the first issue we use a physically-based model, similar to 
a particle system in computer graphics.  A proximity-based 
force field is defined between the rectangles so that either an 
attracting force or a repelling force is applied based on the 
distance between the two rectangles in consideration.  The 
equations of motion are solved numerically assuming a point 
mass at the center of the rectangles and viscous damping.   

The second issue is resolved by checking the local population 
density and adaptively adding or removing rectangles during 
the dynamic simulation of the motion of the rectangles.  After 
an iteration, if a region has an excessive number of rectangles, 
then rectangles are removed, and if there are significant holes, 
rectangles are added. 

Delaunay triangulation tries to locally maximize the 
minimum angle in pairs of triangles, which ideally produces 
equilateral triangles.  This is often not the case in anisotropic 
meshing, where long, slender triangles maybe preferred.  So, 
the circumcircle test is suitably modified using the input 
metric tensor to evaluate which of the two possible 
triangulations of 4 nodes are desirable.   

Once the triangular mesh is obtained, it is first converted to a 
quad-dominant mesh using the input directionality data, and 
then to an all-quad mesh using mesh conversion templates. 
Each of these topics is addressed in the following sub-
sections. 

4.2 Mesh Anisotropy - Specification, 
Interpretation 

An input 2x2 metric tensor field is used to specify the desired 
anisotropy.  As in previous work [4, 21-23] this tensor is 

symmetric, positive-definite.  For completeness, the 
following topics are explained: 

1. How to calculate values of mesh sizes and directions, 
given a metric tensor 

2. How to specify the metric tensor for a required 
anisotropy 

Mesh directionality, mesh sizing and therefore, anisotropy 
can be specified in a single compact form using tensor 
notation.  Anisotropy implies that one edge of the element 
has significantly different length than the other(s) – resulting 
in elements that are stretched.  Though these three concepts 
are inter-related, it is important to understand that anisotropy 
cannot be obtained using mesh directionality control and 
mesh sizing control together.  We can obtain anisotropy only 
if the sizing can be controlled independently in different 
directions.  This is different from just using isotropic quads 
and orienting it along a given direction.  Figure 3 explains 
this distinction. 

 

 
(a)  Square Packing with 

Directionality Control 

 

 
(b)  Isotropic Quadrilateral 
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(c)  Graded Square Packing 

 

 
(d)  Graded Isotropic 
Quadrilateral mesh 

 
(e)  Rectangle Packing 

 
(f)  Anisotropic Quadrilateral 
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Figure  3    Square Packing vs.  Rectangle Packing 



The meshes in figure 3 have the same input geometry and 
mesh directionality.  In the figure 3(a), squares of the same 
size are packed in the domain according to specified mesh 
directions.  This results in an isotropic quadrilateral mesh 
3(b).  Even if the size of the squares are varied as shown in 
figure 3(c), node locations suitable for a graded quadrilateral 
mesh are obtained, but the mesh 3(d) is still be isotropic.  By 
virtue of packing rectangles with specified aspect ratios 3(e), 
an anisotropic quadrilateral mesh is obtained by controlling 
the node spacing in two different directions.  This is shown in 
figure 3(f). 

The procedure to calculate the required anisotropy from the 
given metric tensor is described first.  Following that, the 
method used to specify the metric tensor, given the 
anisotropy is explained. 

Given a 2x2 tensor M, we obtain the two eigen values λi by 
solving[25] 

0λ− =M I  

(1) 

where I is the 2x2 identity matrix. Once the eigen values are 
found, the eigen vectors xi are found using 

i i iλ=Mx x ,   i = 1,2 

(2) 

The eigen vectors are the directions of the major and minor 
axes specifying the mesh directionality and the eigen values 
are the inverse of the squares of the major and minor radii. 

 

 
 

Figure  4    Specification, interpretation of a tensor as an 
ellipse 

Analogously, given the directions and magnitudes of the axes 
(the desired mesh sizing and directionality as described 
above), the tensor can be calculated using 

T=M RΛR  
(3) 
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As shown in figure 4, θ is the angle between the major axis of 
the ellipse and the positive x-axis and d1, d2 are the major 
and minor axis diameters. 

In our implementation, we specify this by  

1. a direction X2 specifying the minor axis 

2. a base size along X2 

3. an aspect ratio 

The single direction specifies the orientation of the minor 
axis.  Since the principal axes are perpendicular to each other, 
the direction of the major axis can be easily calculated.  Mesh 
sizing information is given as a base size along the minor 
axis and an aspect ratio – a ratio of the diameter of the major 
axis to that of the minor axis.  The specified “stretching” can 
easily be visualized using this aspect ratio. 

4.3 Close Packing of Oriented Rectangular 
Cells 

To get appropriate node locations, rectangles are packed 
closely according to the given input.  A physically-based 
particle simulation approach is used to solve this rectangular 
packing problem efficiently. 

The input metric tensor field is used to specify the length, 
breadth and orientation of quadrilateral elements in the 
domain.  This data is stored in a background grid at discrete 
locations.  At intermediate points, the data at the four grid 
nodes enclosing the point are linearly interpolated.  
Alternatively, if input is given only at a few points, then 
values at all nodes are calculated using a Laplacian 
smoothing [26] type approach to obtain a smoothly varying 
field. 

In the triangular bubble mesh technique [2, 3] a force similar 
to Van der Vaals force produces hexagonal packing of 
bubbles.  This field produces an attractive force if two 
particles are farther than a stable distance, and a repulsive 
force if they are located closer than the stable distance.  Node 
locations obtained this way create a well-shaped isotropic 
triangular mesh.  This field was modified in square packing 
to obtain node locations suitable for isotropic quadrilateral 
mesh generation [5] by adding four sub-fields to the main 
force field.  In the proposed method, the field used for square 
packing has been “stretched” using the input aspect ratio, to 
obtain rectangular packing. 

 



 
(a)  Force field used for square packing 

 
(b)  Force field used for rectangle packing 

Figure  5    Force fields used for packing 

Figure 5 (a) shows the force field used in square packing. In 5 
(b) the given aspect ratio is locally constant and is 2 along the 
x-axis.  The corresponding potential function can be obtained 
by integrating the force.  The rectangles try to occupy 
minimum energy positions in this field.  Packing is complete 
when the geometry is covered sufficiently, without any 
significant gaps or overlaps. 

d1

d2

 
d1, d2    Desired Mesh directions 

Figure  6    Rectangle packing using ellipses 

Ellipses can be used to achieve rectangle packing as shown in 
figure 6.  After the central rectangle, other stable positions for 
rectangles are the along the directions d1 and d2.  Once these 
are also occupied, the ones in between can be filled.  For a 

graded anisotropic quadrilateral mesh (the base size of the 
rectangles and the aspect ratio may vary), the fields and the 
sub-fields have to be suitably adjusted to obtain packing of 
rectangles of desired sizes which would in turn give us a 
mesh consistent with the input. 

Using this proximity-based force, a physically-based 
relaxation method is used to find a closely packed 
configuration of rectangles.  Due to the non-linear nature of 
the force and complicated geometric constraints, force 
equilibrium equations become highly non-linear.  Therefore it 
is difficult to solve the equation using a multi-dimensional 
root finding technique such as the Newton-Raphson method. 

The solution to this problem is to assume a point mass m at 
the center of each rectangular cell and a viscous damping c 
and solve these equations of motion (equation 6) using a 
numerical integration scheme like the fourth-order Runge-
Kutta method. The positions of rectangles xi are thus obtained. 

( ) ( ) ( )i i im t c t t+ =x x f
�� �

        1,2,....,i n=  

(6) 

While solving this equation numerically, we adaptively adjust 
the number of rectangles in the domain.  This is necessary as 
the number of rectangles needed for packing is unknown at 
the start.  We generate the initial configuration using octree 
subdivision.  During the simulation, we use a procedure of 
adding rectangles in sparse areas and deleting rectangles in 
dense areas, to get closely packed rectangles.  This dynamic 
simulation and adaptive population control approach makes 
adaptive remeshing very efficient because we can just 
continue the simulation process from previous node locations 
without starting from a totally fresh configuration, when the 
geometry, node spacing or mesh directionality is changed. 

4.4. Anisotropic Delaunay Triangulation 

Once a force-balancing configuration of rectangles is 
obtained, the centers of the rectangles must be connected to 
form a complete triangular mesh, which is then converted 
into a quad mesh.  In connecting nodes, Delaunay 
triangulation is considered suitable for finite element analysis, 
as the triangulation maximizes the smallest angles of the 
triangles.  Ideally, it creates triangles as equilateral, or 
isotropic, as possible for the given set of points; thus thin, or 
anisotropic triangles are avoided whenever possible. 

One important property of Delaunay triangulation is that a 
circumcircle of a Delaunay triangle, must not contain other 
nodes inside it.  To check this, many Delaunay triangulation 
algorithms use the circumcircle test.  This test is also used in 
Sloan's algorithm [27] which was implemented in the original 
2-D isotropic bubble mesh.  The circumcircle test is 
performed on a pair of adjacent triangles that forms a convex 
quadrilateral.  Given such a set of four points, the test checks 
if the fourth point lies inside the circumcircle of the triangle 
formed by the other three points.  If it is, the four points are 
then reconnected into the other possible configuration of two 
triangles.  This test is not suitable for anisotropic meshing.  



Delaunay triangulation is modified to incorporate anisotropy 
in the circumcircle test. 

Assuming the metric tensor is locally constant, the 
circumcircle test is done in normalized space.  The co-
ordinates of the four nodes under consideration are 
transformed so that an ellipse is mapped back to a unit circle 
[23].  A local average tensor can be determined by first 
calculating the barycenter of the four nodes and then finding 
the metric tensor at this barycenter1  
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where x1, x2, x3, x4 are position vectors of the four nodes in 
question. 

This metric tensor is used to transform the coordinates of the 
four nodes under consideration.  A rotational and scaling 
transformation is used to map the ellipse corresponding to 
this tensor into a unit circle.  The new coordinates are given 
by 
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So, the circumcircle test is applied in transformed normalized 
coordinates.  This modifies the Delaunay triangulation used 
in the original bubble mesh program so that the input 
anisotropy is taken into consideration.   

                                                                    
1 Slightly different anisotropic Delaunay triangulation schemes are used by 
other researchers [21-23].  For example, an alternative way to take an average 
of four metric tensors is: 
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Figure 7 shows how a different pair of triangles is selected 
when the anisotropic circumcircle test is performed after 
transforming the positions of the four nodes. 

 
(a)  Original circumcircle test will choose 1 2 3∆x x x and 1 3 4∆x x x  
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choose 1 2 4∆x x x  and 2 3 4∆x x x  

 

Figure  7    Anisotropic circumcircle test 

In the example shown in figure 7, an aspect ratio of 2 is 
desired along the horizontal direction.  The original 
circumcircle test 7(a) does not account for this and chooses 
the pair ∆x1x2x3 and ∆x1x3x4 although this does not orient the 
triangles according to the desired anisotropy.  The modified 
approach first transforms the coordinates and then applies the 
circumcircle test. As shown in figure 7(b), this chooses the 
right pair of triangles. 

To demonstrate the effectiveness of this procedure, figure 8 
contrasts the original Delaunay triangulation and the 
anisotropic Delaunay triangulation.  Given the same inputs, 
the anisotropic Delaunay triangulation creates a mesh that is 
stretched and “flows” along the input mesh directionality and 
conforms better to the desired anisotropy. 

 
(a)  Input Mesh Directionality 



 
(b)  Normal Delaunay Triangulation 

 
(c)  Anisotropic Delaunay Triangulation 

Figure  8     Effect of anisotropic Delaunay 
triangulation 

4.5. Conversion to Quadrilateral Mesh 

After an anisotropic triangular mesh topology is obtained, it 
is first converted into a quad-dominant mesh by selectively 
merging two triangular elements into a quadrilateral element 
along the given vector field.  This mesh conversion algorithm 
consists of three stages:  

1. Calculate score Ωi that measures how well the resultant 
quadrilateral mesh element aligns along the specified 
mesh directions if the ith non-boundary edge of a 
triangular element is removed to form a quadrilateral. 

2. Sort all the non-boundary edges using a priority queue 

3. Delete the edges successively from the top of the 
priority queue.  The deletion of one edge creates one 
quadrilateral. 

The score Ωi is calculated by comparing the directions of the 
four edges of the resultant quadrilateral element with the 
input mesh direction vectors at the centers of the edges.  For 
side j of the quadrilateral element i, we calculate ωij using  
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where the subscript i is the index of a quadrilateral element 
and j = 1, 2, 3, 4 is the index of the side edge of the element.  
The inner product ωij is computed using uij the unit vector of 
the edge j of quadrilateral i, and vij the input mesh direction 
vector at the center of that edge.  The product is weighted by 
kj so that the input anisotropy is taken into account. For the 
two shorter sides of a rectangle kj is 1 and for the longer sides 
it is the aspect ratio.  From this definition of ωij the score Ωi 

is calculated as follows 
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After going through the above stages, a quad-dominant mesh 
is obtained.  This is converted into an all-quad mesh using 
one of two mesh conversion templates [15] 

1. One triangle to three quads 

2. One quad to four quads 

 

 

One triangle to three quads 

 

One quad to four quads 

Figure  9    Mesh Conversion Templates 

In both these methods, a new node is inserted at the centre 
using linear interpolation of midpoints of the edges.  This is 
joined to each of the applicable edges to form quadrilateral 
mesh elements.  So, the final element size is roughly half the 
size of elements at the previous step. 

5. RESULTS 

This section contains the results of the automatic anisotropic 
quadrilateral mesh generation technique proposed in this 
paper.  The sequence of pictures in figures 10 and 11 is as 
follows.  The first picture (a) is the desired mesh 
directionality.  Picture (b) has rectangles packed in 
accordance with the input.  The third picture is the triangular 
mesh obtained after anisotropic Delaunay triangulation (c).  
The anisotropic quadrilateral mesh is the final image (d). 

The domain in figure 10 is a circle approximated using line 
segments.  Mesh directions 10(a) are those corresponding to a 
family of rectangular hyperbolas. The aspect ratio is varied 
from 2 at the left of the domain, to 4 at the right.  The 
rectangle packing 10(b) shows this.  The intermediate 



triangle mesh 10(c) conforms to the given input.  The 
variation in aspect ratio of quadrilateral elements is seen in 
10 (d). 

 

 
(a)  Input mesh directions 

 
(b)  Packed Rectangles 

 
(c)  Delaunay Triangulation 

 
(d)Anisotropic Quadrilateral Mesh,  Nodes  621, Elements  564 

Figure  10    Mesh generation result – 1 

 

(a)  Input mesh directions 

(b)  Packed Rectangles 

(c)  Delaunay Triangulation 



(d)  Anisotropic Quadrilateral Mesh  

Nodes  1303, Elements  1212 

Figure  11    Mesh generation results – 2 

The results shown in figure 11 showcase the full functionality 
of the presented technique.  Mesh directionality and sizing is 
independently controlled in two directions – parallel and 
perpendicular to the specified direction (base size of 
rectangle and aspect ratio).  The aspect ratio is linearly varied 
from 2 at the right end to 3 at the left end.  The base size of 
the rectangles is 5 at the right and increases to 10 at the left.  
Mesh directions are specified to coincide with the boundary.  
This shows how a boundary-aligned mesh may be obtained 
using this method, without front collision problems typical of 
advancing front methods. 

6. APPLICATION – MESH GENERATION FOR 
STEADY STATE HEAT TRANSFER 

This section describes a procedure which can generate 
meshes for real world problems, using the proposed method. 
A mesh is generated to solve a steady-state heat-transfer 
problem.  A preliminary analysis is used to specify the inputs 
required for this technique.  Once the mesh is generated, it is 
used to solve the problem.  Comparing the temperature 
contours of regular meshes with those of the generated mesh 
shows that the computational cost can be reduced without 
losing solution accuracy. 

 
(a)  Input geometry, loads 

 

(b)  Coarse mesh 

Nodes        121 

Elements    100 













Figure  12    Preliminary analysis using a coarse 
mesh 

Figure 12(a) shows the problem being solved.  The eight 
points shown in the interior of the geometry are at 3000C.  
The four sides are at 00C.  The initial coarse mesh is 12(b).  
The contour plot of the solution is 12(c).  The directions of 
the temperature gradients are shown in figure 12(d). 

To specify the inputs required for the procedure, a 
preliminary analysis is done using a coarse mesh of 100 
square elements.  Even though a few important details may 
be missed if the mesh is too coarse with reference to the 
features in the problem, it is better than generating a mesh 
with no consideration to the boundary conditions, loads, or 
material properties. 

Data exchange interfaces are used to exchange mesh and 
solution data between ANSYS and the proposed meshing 
scheme.  The command line interface of ANSYS is used to 
read in scripts to import the generated mesh.  The nodal 
solution and the list of nodes and elements in plain text 
format are used for export. 

The flexibility of the process allows arbitrary specification of 
anisotropy – given as mesh sizes, aspect ratios and directions.  
Mesh directions are specified using temperature gradients 
calculated using the coarse mesh solution.  In heat transfer 
problems, there are large temperature gradients near regions 
of high temperature.  So, a small mesh size and aspect ratio is 
specified at regions where the high temperature is applied.  
This demonstrates how an expert can use this technique.  A 
better way would be to automate this based on error bounds 
or other desired criteria. 

The FEA code ANSYS was used to solve the problem and to 
make the contour plots in figure 13.  The plots all have the 
same scale – the same shade represents the same range of 
temperature in the contour plots 13(b), 13(d), and 13(f). 

The mesh thus generated is shown in figure 13(e).  As a 
comparison, figures 13(a) and 13(c) show a regular mesh of 
900 and 1600 elements respectively.  The temperature 
contours for the generated mesh 13(f) seem to be better than 
those for the 900 element regular mesh 13(b), even though it 
has fewer number of elements – 828.  This is a qualitative 
comparison, assuming the 1600 element mesh has the better 
solution.  This is a fair assumption because, in such a 
straightforward problem, when the number of uniform 
elements are increased, better solutions are obtained.  For 
instance, the contours are smoother and the resolution of the 
high temperatures is better.  The second contour from high 
temperature spots of the generated mesh 13(f) resembles 
those of 13(d), more than the corresponding contour of 12(b) 
resembles 13(d).  The number of elements is a good measure 
of the computational cost.  Since better results are obtained 
with fewer elements, this leads us to believe that the 
proposed technique results in a reduction in computational 
cost without loss in accuracy of analysis. 



7. CONCLUSION AND FUTURE WORK 

This paper presents a new technique for generating 
anisotropic quadrilateral meshes in two-dimensions, using a 
physically - based method for obtaining a close packing of 
rectangles.  The novelty of this technique is that closely 
packed rectangles resemble a pattern of Voronoi polygons 
that correspond to a well-shaped, well-aligned, anisotropic 
quadrilateral mesh. 

The centers of the rectangles give the node locations.  
Though a triangular mesh topology is obtained initially, it is 
well suited for conversion to a quad mesh because rectangles 
have been packed using an appropriate force-field. 

A significant advantage of our technique is the ability to 
control the mesh sizing and direction independent of the 
boundary.  This can be used to achieve effective adaptive 
remeshing because meshes can be tailored to suit specific 
application domains and needs – like load conditions, 
properties of materials in stress analysis.  Also, remeshing is 
easy as dynamic simulation can be resumed from previous 
node locations rather than start afresh. 

This method is naturally extensible to three dimensions by 
packing parallelepipeds instead of rectangles to generate 
anisotropic hexahedral meshes. 

Since a large number of inputs are required to use the full 
capabilities of an anisotropic quadrilateral mesh generator, an 
adaptation scheme is desirable which can automatically 
produce the input, in this case – size, aspect ratio, and mesh 
directions.  It is difficult to specify this input in complicated 
problems without prior knowledge.  So a preliminary analysis 
would present a picture of the loads, material properties, and 
boundary conditions.  Even though, it is possible to miss fine 
features, when using a coarse mesh, even this information, 
when used for mesh generation, is much better than none at 
all.  When the mesh better reflects the problem being solved, 
computational cost can be lowered for a desired accuracy, or 
equivalently for the same cost, a better solution can be 
obtained.  The design process is streamlined and cycle times 
are reduced. 

Qualitative methods are used to ascertain how good a mesh is 
for a specific application.  A quantitative approach will give a 
definite indication of how much one mesh is better than 
another.  This is an important issue that should be addressed 
later.
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(a)  Regular mesh    Nodes    961, Elements    900 

 

 
(b) 

 
(c)  Regular mesh    Nodes    1681, Elements    1600 

 

 
(d) 

 
(e)  Generated mesh    Nodes    879, Elements    828 

 

 
(f) 

Figure  13    Meshes and temperature contours – Steady-state heat-transfer



 


