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Abstract—Scatterplot matrix and parallel coordinate plots
are well-used multi-dimensional data visualization techniques.
These techniques have a problem that they need a very large
screen space when an input dataset has an enormous number
of dimensions. To solve this problem, we propose a method for
selecting important scatterplots from all scatterplots generated
from input datasets and for drawing the scatterplots as ”outliers”
and ”regions enclosing non-outlier plots.” The technique is useful
for users to determine whether to delete outliers from the datasets
and form mathematical models of non-outlier plots. This paper
introduces an example of visualization using this technique with
a retail transaction dataset and climate values.

Index Terms—Multi-Dimensional Data, Visualization, Scatter-
plot

I. INTRODUCTION

There have been many multi-dimensional datasets in daily
life and application domains. Features and regularity of multi-
dimensional data are important knowledge for understanding
and utilizing the data. We can easily discover the features and
trends of multi-dimensional data by using effective visualiza-
tions.

Scatterplot matrix (SPM) and parallel coordinate plots
(PCPs) [3] are well-known multi-dimensional data visual-
ization techniques. To visualize n-dimensional data, SPM
generates scatterplots with arbitrary pairs of dimensions and
arranging them as a n×n matrix. Meanwhile, PCPs displays n
parallel axes, plots the values on the axes, and connects them
by polygonal lines. Although these techniques can visualize all
dimensions of input datasets without deficiency of information,
it is problematic that they need a very large screen space when
the input dataset has an enormous number of dimensions. Also,
we cannot expect that interesting features and trends are nec-
essarily discovered in all dimensions of the input dataset. As
a result of this discussion, there have been many visualization
techniques which selectively display only a limited number of
meaningful dimensions in recent years.

Mathematical modeling of multi-dimensional data is another
interesting and important issue. We may need to discuss what
types of models can be applied to the multi-dimensional data
after removing outliers. Machine learning is a typical task
which users may need to select appropriate mathematical
models for multi-dimensional data. We expect visualization
techniques can contribute to assist the model selection with
multi-dimensional datasets.

We present a multi-dimensional data visualization technique
addressing the above problems in this paper. This technique
consists of the following two processing steps.

• Selection and display of important scatterplots from all
possible scatterplots.

• Drawing of scatterplots as ”outliers” and ”regions enclos-
ing non-outlier plots.”

This paper describes the processing flow of the presented
technique and introduces a case study with a retail transaction
dataset.

II. RELATED WORK

A. Multi-dimensional data visualization with dimension selec-
tion

There have been many multi-dimensional data visualization
techniques which select a set of low-dimensional subspaces
that are meaningful to visualize. For example, Zheng et al. [11]
presented a technique which selects scatterplots that satisfy
user-specified criteria from all scatterplots generated from
input datasets and arranging them based on the dissimilarity
among the scatterplots. Suematsu et al. [8] presented a tech-
nique which generates low-dimensional PCPs from meaningful
groups of dimensions and arranging them based on their
dissimilarity. However, these techniques do not the interactive
control of the number of PCPs or scatterplots to be displayed.

Itoh et al. [4] presented a visualization technique for multi-
dimensional data to solve this problem. This technique dis-
plays a set of low-dimensional subspaces as a set of low-
dimensional PCPs on the left side of the screen, which are



Fig. 1. A snapshot of visualization by Itoh et al. [4].

selected interactively with the dimension graph displayed on
the right side, as shown in Figure 1. Note that Figure 1 is
excerpted from Itoh et al. [4], which represents the data other
than what will be described later. Watanabe et al. [9] presented
an extended technique which visualizes as a combination of
low-dimensional PCPs and scatterplots. This technique applies
scatterplots for pairs of dimensions if the pairs have interesting
numeric distributions, but it is difficult to represent by PCPs
effectively.

Though the technique presented in this paper also selects
interesting pairs of dimensions as our previous techniques [4],
[9], the technique displays the selected pairs of dimensions
only by scatterplots, not by PCPs.

B. Multi-dimensional data visualization using scatterplots

Wilkinson et al. [10] and Dang et al. [6] presented
scatterplot-based multi-dimensional data visualization tech-
niques. Wilkinson et al. proposed a method to quantitatively
evaluate nine features called Scagnostics based on the appear-
ance of the scatterplots generated from input datasets. Dang et
al. proposed a method to cluster scatterplots characterized by
Scagnostics generated from input datasets, select scatterplots
and display applying a force-directed layout algorithm. These
techniques do not need a very large screen space even if an
input dataset has an enormous number of dimensions.

Scagnostics can be applied to the technique presented in
this paper while selecting the scatterplots; however, our cur-
rent implementation applies different criteria as described in
Section 3.

C. Density-aware scatterplots

Continuous Scatterplots [1] can map the density of multi-
dimensional items into m-dimensional scatterplots in consid-
eration of an arbitrary density defined on an input field of
the n-dimensional domain. This method combines statistical
visualization such as scatterplots, with scientific visualization
such as volume or flow visualization. Our technique presented
in this paper also continuously paints the scatterplots; how-
ever, we do not directly consider density while painting the
scatterplots.

III. PROPOSED TECHNIQUE

This section describes our technique for selecting important
scatterplots generated from input multi-dimensional datasets

and for drawing the scatterplots as ”outliers” and ”regions
enclosing non-outlier plots.”

Our current implementation provides the same two types of
algorithms for scatterplot selection as Itoh et al. [4]. The first
algorithm calculates correlation coefficients between arbitrary
pairs of dimensions and selects scatterplots formed from pairs
of dimensions which have larger absolute values of correlation
coefficients. Let d1 and d2 be dimensions, the absolute value of
the correlation coefficient dd1,d2 between d1 and d2 is defined
as

dd1,d2 = |1.0− fc(d1, d2)| (1)

where fc(d1, d2) denotes Spearman’s rank correlation coeffi-
cients.

The second algorithm calculates the entropy of positions
of individuals on a scatterplot treating values of a categor-
ical dimension as labels: this mechanism is useful to select
scatterplots those specific labels of individuals are distantly
positioned from others. In particular, we compute the entropy
H for all pairs of dimensions

H(d1, d2) = − 1

N

N∑
i=1

C∑
c=1

p(yi = c|xd1,d2

i ) log p(yi = c|xd1,d2

i )

(2)
where xi represents the i-th vector from an n-dimensional
input dataset Ds defined as Ds = {x1, . . . , xN}, yi represents
the label assigned to the i-th vector, N and C represent the
number of vector and the number of labels, and p(yi =
c|xd1,d2

i ) represents the probability that the c-th class Yc is
assigned to the i-th vector xi. Moreover, xd1,d2

i is a two-
dimensional vector containing the dimensions d1 and d2 of xi.
This value represents the separation of labels in a scatterplot
generated by d1 and d2.

Our technique also draws scatterplots as ”outliers” and ”re-
gions enclosing non-outlier plots.” The current implementation
applies Delaunay triangulation to connect adjacent dots in the
scatterplots and detect outliers from the edges of the triangular
mesh. Delaunay triangulation is a generic method which con-
nects vertices scattered in a 2D space and generates a triangle
mesh. We apply an incremental triangulation algorithm which
firstly generates a large rectangle surrounding every vertex in
a scatterplot as the initial mesh, then adds the vertices one-by-
one, and connects the vertices to refine the triangular mesh.

After constructing the mesh, our implementation deletes
edges which are longer than a user-specified threshold and also
deletes triangles which contain such edges. Here, we extract
vertices that are not connected to any vertices as outliers as
shown in Fig 2. Users can control the threshold to adjust the
number of outliers. Then, the technique represents the regions
enclosing non-outlier plots by drawing the region boundary of
the triangles that connect the non-outlier plots by a dark color
and filling the triangular mesh by a light color.

Also, users can delete arbitrary outliers from input datasets
and redraw the scatterplots as shown in Fig 3. When the outlier
at the upper right in Fig 3 (left) is deleted, the scale of the
vertical axis is updated, and the non-outlier region is also



updated as shown in Fig 3 (right). The non-outlier regions
can be enlarged when we delete the distant outliers. Therefore,
users can discover new features, trends, and potential outliers
that are previously undiscovered.

IV. EXAMPLE

We implemented the presented technique with Java Devel-
opment Kit (JDK) 1.8.0, reusing the implementation of Itoh
et al. [4] for scatterplots selection and user interfaces.

This paper introduces an example of visualization by the
presented technique applying a retail transaction dataset and
climate values. Table I shows the explanatory variables (cli-
mate values) assigned to the horizontal axis and the objective
functions (retail transaction values) assigned to the vertical
axis in this dataset. These values are recorded in the dataset
day-by-day. Data points are 457 days from May 1, 2016 to
July 31, 2017, and 35 scatterplots consisting of 5 horizontal
axes and 7 vertical axes can be analyzed. Remark that this
dataset is perturbated by adding random real values to each
column of the original dataset.

TABLE I
THE EXPLANATORY VARIABLES AND THE OBJECTIVE FUNCTIONS

explanatory variables
(climate values)

MinTemp Minimum temperature
MaxTemp Maximum temperature
SumRain Precipitation
SumSunTime Sunshine duration
MaxWind Maximum wind speed

objective functions
(retail transaction values)

Revenue Revenue
Guest1 Number of customer
Guest2 Number of visitor
Ratio Conversion rate
PerGuest Average revenue per customer
AveUnit Average price of purchased items
AveNum Average number of purchased items

Fig 4 shows an example of a numerical distribution in which
one attribute (weekday) is shaped to enclose the other attribute
(holiday). This figure depicts that the average revenue per
customer and the average price of purchased items are more
dispersed on weekdays than on holiday.

Fig 5 shows the numerical distribution of the average price
of purchased items and the average number of purchased items
from September to November. As the winter approaches, the
average price of purchased items tends to increase. This is
presumably because the thicker clothes are, the higher the
prices of items are. On the other hand, the average number
of purchased items tends to decrease. This is also presumably
because the prices of items are higher than those of clothes for
spring or summer, and therefore customers get more careful
while purchasing items.

Figure 6 shows the numerical distribution of the conversion
rate in February, July, and November. This figure shows
that there are some periods in which the conversion rate is

prominently high only in early February and late July. One of
the reasons for this phenomena is that a much larger number of
customers than visitors for window shopping came there due to
special events such as over-stock sales. The figure also depicts
that there is only one day with an unusually high conversion
rate in November.

V. CONCLUSION

This paper proposed a multi-dimensional data visualization
technique which selects important scatterplots from all possi-
ble scatterplots generated from input datasets and draws the
scatterplots as ”outliers” and ”regions enclosing non-outlier
plots.” The technique presented in this paper is useful for users
to determine whether to delete outliers from the datasets and
form mathematical models of non-outlier plots.

As future work, it is necessary to draw the regions enclosing
non-outlier plots more clearly. When the three or more colors
of polygons overlap each other, our current implementation
may vaguely paint the overlapping portions, and therefore
comprehensibility of the visualization results may be worse.
We need to improve the implementation so that many over-
lapped regions are clearly drawn.

We found experimentally that the two types of algorithms
of our current implementation for scatterplot selection do
not necessarily select all scatterplots that we subjectively
determine important. Thus, we would like to implement new
criteria so that such scatterplots are automatically selected.

Another issue is how to extract outliers. Our current im-
plementation to extract outliers is just based on distances on
scatterplots. Data items are regarded as outliers if they are
distant from all other data items on one of the scatterplots
because we extract outliers using Delaunay triangular meshes.
There have been various techniques for extracting outliers
from multi-dimensional data [2] [5] [7]. We would like to
develop our implementation of extracting outliers.

After implementing these functions, we would like to apply
more diverse datasets to this technique and further continue
with development to be versatile implementation.

ACKNOWLEDGMENT

We appreciate ABEJA, Inc. for providing the dataset.

REFERENCES

[1] Sven Bachthaler and Daniel Weiskopf. Continuous Scatterplots. IEEE
Transactions on Visualization and Computer Graphics, Vol. 14, No. 6,
pp. 1428–1435, 2008.

[2] Denis Cousineau and Sylvain Chartier. Outliers detection and treatment:
a review. International Journal of Psychological Research, Vol. 3, No. 1,
pp. 58–67, 2010.

[3] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: a tool
for visualizing multi-dimensional geometry. In IEEE Visualization
(VIS1990), pp. 361–378, 1990.

[4] Takayuki Itoh, Ashnil Kumar, Karsten Klein, and Jinman Kim. High-
Dimensional Data Visualization by Interactive Construction of Low-
Dimensional Parallel Coordinate Plots. Journal of Visual Languages
and Computing, Vol. 43, pp. 1–13, 2017.

[5] Chang-Tien Lu, Dechang Chen, and Yufeng Kou. Algorithms for Spatial
Outlier Detection. In Proceedings of the Third IEEE International
Conference on Data Mining (ICDM’03), 2003.



Fig. 2. An example of drawing the scatterplots as ”outliers” and ”regions enclosing non-outlier plots.”

Fig. 3. An example of deleting an outlier. (left) before deleting an outlier. (right) after deleting.
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Fig. 4. An example of a numerical distribution in which a non-outlier region of a specific attribute shapes to enclose the non-outlier region of the other
attribute.
The light blue region represents the distribution on weekdays while the red region represents the distribution on holidays.
(upper) before enclosing. (lower) after enclosing.

Fig. 5. The numerical distribution of the average price of purchased items and the average number of purchased items from September to November.
The yellow region represents the distribution in September, the yellow green region represents in October and the green region represents in November.
The gray dots represent the distribution in the other months.
(upper) before enclosing. (lower) after enclosing.



Fig. 6. The numerical distribution of the conversion rate in February, July, and November.
The blue region represents the distribution in February, the red region represents in July and the green region represents in November.
The gray dots represent the distribution in the other months.
(upper) before enclosing. (lower) after enclosing.


