
Fast Isosurface Generation Using the Cell-Edge
Centered Propagation Algorithm

Takayuki ITOH Yasushi YAMAGUCHI Koji KOYAMADA

IBM Research, Tokyo Research Laboratory,
1623-14 Shimotsuruma, Yamato-shi, Kanagawa, 242-8502, JAPAN

itot@trl.ibm.co.jp
yama@graco.c.u-tokyo.ac.jp
koyamada@soft.iwate-pu.ac.jp

Abstract. Isosurface generation algorithms usually need a vertex-identification
process since most of polygon-vertices of an isosurface are shared by several
polygons. In our observation the identification process is often costly when
traditional search algorithms are used. In this paper we propose a new
isosurface generation algorithm that does not use the traditional search
algorithm for polygon-vertex identification. When our algorithm constructs a
polygon of an isosurface, it visits all cells adjacent to the vertices of the
polygon, and registers the vertices to polygons inside the visited adjacent cells.
The method does not require a costly vertex identification process, since a
vertex is registered in all polygons that share the vertex at the same time, and
the vertex is not required after the moment. In experimental tests, this method
was about 20 percent faster than the conventional isosurface propagation
method.

1. Introduction

 Isosurface generation is one of the most effective techniques for extracting features
of a scalar field in a volume data, such as the results of numerical simulation or
medical measurement. Discussion of efficient isosurfacing methods has therefore
been very active. Many approaches have been reported for the acceleration of
isosurface generation, such as parallelization [1], graphics acceleration by generating
triangular strips [2], and geometric approximation [3]. The most popular approach is
to skip non-isosurface cells. Many reported algorithms sort or classify cells according
to their scalar values [4,5,6,7]. Other algorithms that use the spatial-subdivision
algorithms have been also proposed [8,9]. The present authors have proposed
extrema-based algorithms [10,11] that efficiently search for isosurface cells. Starting
from the extracted isosurface cells, an isosurface is generated by recursively
traversing adjacent cells [12].
The above-mentioned algorithms have drastically reduced the unnecessary cost of
visiting non-isosurface cells. Table 1 shows the cost of generating 20 isosurfaces with
different iso-values in an unstructured volume consisting of tetrahedral cells. The
experimental test compares a straightforward algorithm (ST) that visits all cells and
the volume thinning algorithm (VT) [11]. Here,

 -- cN and nN denote the numbers of cells and nodes in a volume.
 -- tN and vN denote the total numbers of triangular polygons and vertices in the 20
isosurfaces.
 -- 1T denotes the computational time of visiting non-isosurface cells.
 -- 2T denotes the computational time of visiting isosurface cells and constructing the
topology of polygons.
 -- 3T denotes the computational time of calculating polygon-vertex data, such as
positions and normal vectors.
 -- totalT denotes the total time of generating isosurfaces.

Table 1. Computational times of processes in generating isosurfaces.

Dataset 1 1 2 2
Method SF VT SF VT

cN 61680 61680 346644 346644

nN 11624 11624 62107 62107

tN 80995 80995 135358 135358

vN 43158 43158 71358 71358

1T (sec.) 8.30 0.09 42.23 0.57

2T (sec.) 3.80 3.45 6.25 5.88

3T (sec.) 0.76 0.75 1.14 1.15

totalT (sec.) 12.86 4.29 49.62 7.60

 The results indicate that above-mentioned acceleration algorithm archived the great
reduction of 1T . In other words, other approaches that reduce 2T or 3T are needed to
develop more efficient isosurfacing algorithms.
In our observations, a polygon-vertices identification process occupies the largest

part of the computational time in constructing the topology of polygons. Though it
would be possible to implement the isosurfacing algorithm without the polygon-
vertex identification process, the process is desirable, because it reduces the amount
of polygon-vertex data calculation and the memory-space. In Table 1, the number of
vertices vN would be 3 tN --- about six times greater --- without the identification
process. In this case, the computational time 3T would be greater than the polygon
construction time 2T , and the memory-space would be about three times greater.
Moreover, the identification process is necessary if isosurfaces are used for
applications that require the topology of polygons, such as parametric surface
reconstruction, mesh compression, or mesh simplification.
An example of implementation of the vertex identification process is described in

Doi and Koide [13]. Their implementation uses a hash-table to search shared vertices,
however, such traditional search algorithm occupies the large computation time in our
observation. Isosurfacing process would be accelerated if the vertex-identification
process could be implemented without the costly search algorithm.

 In this paper we propose an isosurface propagation algorithm that efficiently
identifies shared polygon-vertices. When our algorithm constructs a polygon of an
isosurface, it visits all cells adjacent to the vertices of the polygon, and registers the
vertices to polygons inside the visited adjacent cells. The method does not require a
costly vertex identification process, since a vertex is registered in all polygons that
share the vertex at the same time, and the vertex is not required after the moment.

2. Related Work

2.1 Polygon-Vertex Identification

 When polygons in an isosurface are generated by the conventional Marching Cubes
method [14], all their vertices lie on cell-edges, and mostly shared by several
polygons. If a volume data structure contains all cell-edges data, the shared vertices
are immediately extracted. However, cell-edge data is not usually preserved in a
volume data structure, owing to the limited memory-space.

 Polygon & vertex generation Vertex registration Vertex extraction

Fig. 1. Polygon-vertex identification using a hash-table.

An example of a vertex identification process is described in Doi and Koide [13].
Given an iso-value of an isosurface C , the implementation first determines the sign
of CzyxS −),,(at nodes of a cell, where),,(zyxS denotes the scalar value at a node.
If all the signs are equal, the cell is not an isosurface cell and the calculation of the
action value is skipped. Otherwise, the process extracts isosurface cell-edges of a cell.
Here, a cell-edge is represented as a pair of nodes. When a polygon-vertex is
generated on a cell-edge, it is registered to the hash-table with the pair of nodes that
denotes the cell-edge. When another isosurface cell that shares the same cell-edge is
visited, the polygon-vertex is extracted from the hash-table, by inputting the pair of
nodes. In the implementation, all isosurface cell-edges are registered to the hash-table
with the polygon-vertices of an isosurface.

Hash-table
vertex node-pair

….

(1n , 2n)

1P

1n

2n
bV

2P

aV

bV

cV

dV

aV

bV

cV

dV

1P

1n 2n

 Fig. 1 shows an example of this process. When polygon 1P is first constructed,
vertices aV , bV , cV , and dV are registered in a hash-table with pairs of nodes. For
example, vertex bV is registered with a pair of nodes, 1n and 2n , that denotes a cell-
edge that bV lies on. When polygon 2P is then constructed, vertex bV is extracted
from the hash-table, by inputting the pair of nodes, 1n and 2n .

2.2 Isosurface Propagation

 An isosurface is efficiently generated by recursively visiting adjacent isosurface
cells. Such recursive polygonization algorithms were originally proposed for efficient
polygonization of implicit functions [15,16], and have been then applied to a volume
datasets [12].
In a typical isosurface propagation algorithm, isosurface cells are extracted by a

breadth-first traverse. In the algorithm, several isosurface cells are first inserted into a
FIFO queue. They are then extracted from the FIFO, and polygons are generated
inside them. Isosurface cells adjacent to the extracted cells are then also inserted into
the FIFO. This process is repeated until the FIFO queue becomes empty, and finally
the isosurface is constructed.

Fig. 2. Isosurface propagation.

 Fig. 2 shows an example of a typical isosurface propagation algorithm. When
polygon 1P is first constructed, four adjacent isosurface cells, 2C , 3C , 4C , and 5C
are inserted into the FIFO. When these cells are extracted from the FIFO, four
polygons, 2P , 3P , 4P , and 5P , are constructed. When 2P is constructed, adjacent
isosurface cells, 6C , 7C , and 8C are similarly inserted into the FIFO. Polygons 6P ,

FIFO queue

2C , 3C , 4C , 5C

6C , 7C , 8C

Insert Extract
Insert

Extract

1P

4C

3C
2C

5C

bV

aV
cV

dV

8P7P

bV

1P

5P 4P

3P
2P

6P aV
cV

dV

1P

5P 4P

3P
2P

6C

7C
8C

bV

aV
cV

dV

7P , and 8P are then similarly constructed when 6C , 7C , and 8C are extracted from
the FIFO.
 The propagation algorithm has the great advantage of reducing the number of
visiting non-intersecting cells. However, it also has a problem that the starting
isosurface cells must first be specified. Efficient automatic extraction of the starting
cells was previously difficult, especially when the isosurface was separated into many
disconnected parts.
 The authors have proposed a method for automatically extracting isosurface cells in
all disconnected parts of an isosurface [10,11]. The method first extracts extremum
points of a volume, and then generates a skeleton connecting all extremum points.
The skeleton consists of cells, and every isosurface intersects at least one cell in the
skeleton. The method efficiently generates isosurfaces by searching for isosurface
cells in the skeleton and then applying the isosurface propagation algorithm [12].
Our method [10,11] requires less than)(nO computational time for isosurfacing

process, since the cost of searching for isosurface cells is regarded as)(3/1nO on
average, unless the number of extremum points is enormous. The computational time
of pre-processing in the volume thinning method [11] is always regarded as)(nO .

Remark that the vertex-identification process in the isosurface propagation
algorithm still needs a vertex search algorithm. For example, polygon-vertices of 1P ,

aV , bV , cV , and dV , are registered into a hash-table when 1P is generated. The
polygon-vertex bV is then extracted from the hash-table when 2P , 3P , and 8P are
generated.

3 Cell-edge Centered Isosurface Propagation

3.1 Algorithm Overview

In this paper we propose an isosurface generation algorithm that does not need a
search algorithm in its vertex identification process. Fig. 3 shows the overview of the
new method.
The method assumes that at least one isosurface cell is given. It first generates a

polygon 1P inside the given cell, and allocates its polygon-vertices, aV , bV , cV , and

dV . It then visits all cells that are adjacent to polygon-vertices of 1P . In Fig. 3, cells
that are adjacent to bV are visited, and polygons 2P , 3P , and 4P are generated.
Remark that polygon-vertices of the new three polygons are not allocated at that time.
It then assigns bV to the three polygons. bV is no more required in this algorithm,
because all polygons that share bV have been generated at that time. It means that the
search algorithm is not necessary for the vertex-identification in the method.
Similarly, in Fig. 3, cells that are adjacent to aV are then visited. Polygons 5P and 6P
are generated at that time, and aV is assigned to them.

Fig. 3. Overview of the new method proposed in this paper.

3.2 Combination with the volume thinning method

The new method assumes that at lease one isosurface cell is given, so the method
should be combined with an isosurface cell extraction method. We applied the volume
thinning method [11] in order to extract isosurface cells in all disconnected parts of an
isosurface.
The volume thinning method first generates an extrema skeleton, consists of cells, in

a pre-processing. The extrema skeleton has a feature that every isosurface intersects
it, so isosurface cells can be always extracted by traversing the extrema skeleton.
 Fig. 4 shows the pseudo-code of our implementation. The implementation first
extracts isosurface cells from the extrema skeleton, and inserts them into a FIFO
queue. It then extracts an isosurface cell iC from the FIFO, and constructs the
polygon iP inside iC . At the moment, though the number of polygon-vertices of iP is
specified, each polygon-vertex is not allocated. The implementation then extracts the
isosurface cell-edges of iC . If a polygon-vertex nV is not allocated on an isosurface
cell-edge nE at that time, the implementation allocates nV and registers to the polygon

iP , and visits all cells that share the cell-edge nE by using the connectivity of cells. If
a polygon is not constructed in the visited cell jC , the implementation constructs a
polygon jP in jC . The polygon-vertex nV on nE is registered into the polygon jP . If
the visited cell jC has not been inserted into the FIFO, the implementation also

1P

bV

aV
cV

dV

1P

bV

aV
cV

dV

2P

3P

4P

1P

bV

aV
cV

dV

2P

3P

4P

5P 6P

inserts jC into the FIFO at that time. The above process repeats until the FIFO
becomes empty.
In this algorithm, most of isosurface cells are several times visited by cell-edge-

centered process (the for-loop (3) in Fig. 4), and a polygon is constructed at the first
visit. The cells are also visited when they are extracted from the FIFO (the for-loop
(1) in Fig. 4), and all polygon-vertices of the polygons inside the extracted cells are
set at the moment. The method processes a cell several times; however, our
experimental tests show that its computational time is less than the conventional
methods.

Fig. 4. Algorithm of the cell-edge-centered isosurface propagation method.

void Isosurfacing() {

 for(each cell iC in an extrema skeleton) {
 if(iC is an isosurface cell) { insert iC into FIFO; }
 }

 /* for-loop (1) */
 for (each cell iC extracted from FIFO) {
 if(polygon iP in iC is not constructed) { Construct iP in iC ; }

 /* for-loop (2) */
 for(each intersected edge nE) {
 if(a polygon-vertex nV on nE is not added into iP) {
 Allocate nV on nE ;
 Register nV into iP in iC ;

 /* for-loop (3) */
 for(each cell jC which share nE) {
 if(jP in jC is not constructed) { Construct jP in jC ; }
 Register nV into jP in jC ;
 if (jC has never been inserted into FIFO) { insert jC into FIFO; }
 } /* end for-loop(3) */
 } /* end if(there is not nV) */
 } /* end for-loop(2) */
 } /* end for-loop(1) */

 for(each polygon-vertex nV) { Calculate position and normal vector; }

4. Experimental Results

 This section compares the experimental results given by the cell-edge centered
propagation method with those given by the conventional propagation method. The
experiments were carried out on an IBM PowerStation RS/6000 (Model 560). Four
datasets for unstructured volumes consisting of tetrahedral cells, which contain the
results of numerical simulations, were used for the experiments.
Table 2 shows the results of experiments in which a series of 20 isosurfaces were

generated for each volume, with various scalar values. Here,
-- cN and nN denote the numbers of cells and nodes in a volume.
-- tN and vN denote the total numbers of triangular polygons and vertices in the 20

isosurfaces.
-- 1T denotes the computational time of generating 20 isosurfaces by the

conventional propagation method.
-- 2T denotes the computational time of generating 20 isosurfaces by the cell-edge

centered propagation method.
-- 1pT and 2pT denote the computational times of the polygon construction

processes of the two propagation methods.
In these experiments, the volume thinning method [11] extracts the starting cells of

the propagation.

Table 2. Computational times of processes in generating isosurfaces.

Dataset 1 2 3 4
cN 61680 346644 458664 557868

nN 11624 62107 80468 97943

tN 80995 135398 494480 1164616

vN 43158 71358 251506 588796

1pT (sec.) 3.45 5.88 21.35 49.80

2pT (sec.) 2.53 4.01 15.72 36.20

1T (sec.) 4.29 7.60 26.65 60.81

2T (sec.) 3.35 5.52 20.61 46.80

 The results show that the polygon construction process in the cell-edge centered
propagation method is about 25 percent faster than the conventional propagation
method, and the total isosurfacing process is about 20 percent faster.

5. Conclusion

In this paper we proposed an isosurface generation algorithm that does not use a
vertex search algorithm for the vertex-identification process. The algorithm visits all
cells sharing an isosurface cell-edge at the same time, and the vertex that lies on the

cell-edge is registered to all the polygons inside the visited cells. The vertex is no
more required in the process, and the vertex search algorithm is not therefore
necessary in our method. Our experimental tests showed that the method is about 20
percent faster than the conventional implementation.
 In future, we would like to implement this method for hexahedral cells, and to

measure the computational time of isosurfacing processes.

References

[1] Hansen C. D., and Hinker P., Massively Parallel Isosurface Extraction, Proceedings of IEEE
Visualization '92, pp. 77-83, 1992.

[2] Howie C. T., and Blake E. H., The Mesh Propagation Algorithm for Isosurface
Construction, Computer Graphics Forum (Eurographics), Vol. 13, No. 3, pp. C-65-74, 1994.

[3] Durkin J. W., and Hughes J. F., Nonpolygonal Isosurface Rendering for Large Volume,
Proceedings of IEEE Visualization '94, pp. 293-300, 1994.

[4] Giles M., and Haimes R., Advanced Interactive Visualization for CFD, Computer Systems
in Engineering, Vol. 1, No. 1, pp. 51-62, 1990.

[5] Gallagher R. S., Span Filtering: An Optimization Scheme for Volume Visualization of
Large Finite Element Models, Proceedings of IEEE Visualization '91, pp. 68-74, 1991.

[6] Livnat Y., Shen H., and Johnson C. R., A Near Optimal Isosurface Extraction Algorithm
Using the Span Space, IEEE Transactions on Visualization and Computer Graphics, Vol. 2,
No. 1, pp. 73-84, 1996.

[7] Shen H., Hansen C. D., Livnat Y., and Johnson C. R., Isosurfacing in Span Space with
Utmost Efficiency (ISSUE), Proceedings of IEEE Visualization '96, pp. 287-294, 1996.

[8] Welhelms J., and Gelder A. Van, Octrees for Fast Isosurface Generation, ACM
Transactions on Graphics, Vol. 11, No. 3, pp. 201-227, 1992.

[9] Silver D., and Zabusky N. J., Quantifying Visualization for Reduced Modeling in Nonlinear
Science: Extracting Structures from Data Sets, Journal of Visual Communication and Image
Representation, Vol. 4, No. 1, pp. 46-61, 1993.

[10] Itoh T., and Koyamada K., Automatic Isosurface Propagation by Using an Extrema Graph
and Sorted Boundary Cell Lists, IEEE Transactions on Visualization and Computer
Graphics, Vol. 1, No. 4, pp. 319-327, 1995.

[11] Itoh T., Yamaguchi Y., and Koyamada K., Volume Thinning for Automatic Isosurface
Propagation, Proceedings of IEEE Visualization '96, pp. 313-320, 1996.

[11] Speray D., and Kennon S., Volume Probe: Interactive Data Exploration on Arbitrary
Grids, Computer Graphics, Vol. 24, No. 5, pp. 5-12, 1990.

[13] Doi A., and Koide A., An Efficient Method of Triangulating Equi-valued Surfaces by
Using Tetrahedral Cells, IEICE Transactions, Vol. E74, No. 1, pp. 214-224, 1991.

[14] Lorensen W. E., and Cline H. E., Marching Cubes: A High Resolution 3D Surface
Construction Algorithm, Computer Graphics, Vol. 21, No. 4, pp. 163-169, 1987.

[15] Wyvill G., McPheeters C., and Wyvill B., Data Structure for Soft Objects, The Visual
Computer, Vol. 2, No. 4, pp. 227-234, 1986.

[16] Bloomenthal J., Polygonization of Implicit Surfaces, Computer Aided Geometric Design,
Vol. 5, No. 4, pp. 341-355, 1988.

