

On Edge Bundling and Node Layout for Mutually Connected Directed Graphs

Naoko Toeda*1 Rina Nakazawa*2 Takayuki Itoh*3
Takafumi Saito*4 Daniel W. Archambault*5

Ochanomizu University*1*2*3 Tokyo University of Agriculture Technology *4 Swansea University*5
{toeda, leena, itot}@itolab.is.ocha.ac.jp*1*2*3 txsaito@cc.tuat.ac.jp*4 d.w.archambault@swansea.ac.uk*5

Abstract
Directed graphs are used to represent variety of
information, including friendship on social networking
services (SNS), pathways of genes, and citations of
research papers. Graph drawing is useful to intuitively
represent such datasets. This paper presents an edge
bundling and a node layout technique for tightly and
mutually connected directed graphs. Our edge bundling
technique includes three features: ordinary bundling of
edges connecting common pairs of node clusters,
convergence of multiple bundles connecting to the same
node cluster, and shape adjustment of two bundles
connecting the same pair of node clusters. This paper
includes a case study with a directed paper citation
graph.

Keywords--- Directed graph, Edge bundling, Node

layout, Graph clustering.

1. Introduction

A variety of information in academic and industry fields
can be represented as directed graphs. For example,
friendships on social networking services (SNS) can be
retrieved via Web APIs and constructed as directed
graphs. Pathways of genes are accessible on open
databases and therefore we can construct directed
pathway graphs. Paper citation networks are also typical
directed graphs which can be constructed from open
information on digital libraries of academic societies.

Graph drawing techniques are useful to intuitively
represent the structures of such directed graphs. Many
applications exist to visualize friendships on social
networking services or visualize gene pathways or gene-
gene interactions. In our observation, many of these
software packages feature general graph drawing
algorithms which can be applied to undirected graphs.
Development of directed-graph-specific drawing
algorithms is still an interesting problem.

Edge bundling for comprehensive graph drawing has
been an active topic for recent years. There have been
many techniques [1-4]. However, many of them mainly
support undirected graphs and not directed graphs. In
contrast to many of edge bundling techniques gather

edges at their centers, it is also effective to converge
edges at their end points [5]. It should be more effective
if these approaches are appropriately combined.

This paper presents edge bundling and node layout
techniques for drawing tightly and mutually connected
directed graphs. Our implementation firstly constructs
hierarchy of nodes by recursively applying a graph
clustering algorithm, and then applies a node layout
algorithm to calculate positions of the nodes. Our
implementation applies a directed-graph-specific edge
bundling algorithm to effectively represent connectivity
among node clusters. The algorithm firstly bundles edges
connecting pairs of nodes belonging to the same clusters.
We may generate two bundles between a pair of node
clusters according to the directions of edges. The	
bundling algorithm then converges multiple bundles
departing from or arriving to the same node cluster. Also,
it adjusts shapes of two bundles connecting the same pair
of node clusters.

We designed node clustering and layout algorithms so
that our edge bundling algorithms for directed graphs
work effectively. The node clustering algorithm groups
nodes which have many edges connected to the same
node preferentially, because this strategy bundles more
edges. The node layout algorithm calculates weights of
connections between a pair of node clusters according to
the smaller number of edges of up to two bundles
connecting the clusters, so that tightly connected clusters	
are placed nearby.

This paper presents a case study using a paper citation
network dataset retrieved from ACM Digital Library,
and discusses the effectiveness of the presented
technique.

2. Related Work

Edge bundling has been an active topic that improves the
comprehensibility of drawing complex graphs, which
integrates constitutively or positionally similar edges and
draws them as bundles. Holten [1] presented a
hierarchical edge bundling technique, which
hierarchically groups edges connecting nodes belonging
to same pairs of clusters. This technique mainly supposes
undirected graphs, and therefore it does not feature
directed-graph-specific processes. Also, this technique

selects edges to be grouped according to the hierarchy of
nodes: it does not consider their positions. On the other
hand, several other edge bundling techniques, presented
by Selassie et al. [2], Holten et al. [3] and Ersoy et al.
[4], group positionally and directionally similar edges.
Again, most of these techniques mainly assume
undirected graphs.

In contrast to that many edge bundling techniques
gathers the edges at their midpoints, it is also effective to
converge them at their end points. For example, Luo et
al. [5] presented a technique to draw edges as curves to
converge them at their end points to avoid bundle
ambiguity. However, the technique does not assume a
hierarchy. In contrast to these techniques, this paper
presents a directed graph visualization technique that
cluster nodes, bundle edges at these end points and
avoids edge ambiguity.

Graph clustering is a key technique that makes graph
drawing more effective and comprehensive. Actually
there have been large number of clustering algorithms
introduced by several survey papers [6]. Though finding
densely connected components is definitely the most
popular approach for graph clustering, other approaches
are also effective if we want to maximize the number of
edges to be bundled. Itoh et al. [7] applied edge-
adjacency and node-similarity based graph clustering to
make large number of edges bundled and separate key
nodes from large clusters. The technique presented in
this paper also applies the same clustering algorithm.

Meanwhile, there have been many tree-visualization-
like techniques that operate on directed acyclic graphs
[8][9], which places nodes based on distances from the
starting node. We did not apply this approach since it
does not often work well for dense graphs. Instead, we
applied general algorithms for graph clustering and node
layout, and extended the edge bundling technique for
mutually connected directed graphs.

3. Presented Visualization Tool

This section presents the data structure and processing
flow of the presented technique.

3.1 Data Structure

This paper defines the data structure of an input graph
G consisting of a set of nodes N and edges E as follows:

G = {N,E}
N = {n1,...,nNn

}

E = {e1,...,eNe
}

ni = {ai1,...,aiNa}

ei = {ni,nk}

Here, ni denotes the i-th node. We suppose that a node
has a multi-dimensional attribute value, where
aij denotes the value of the j-th dimension of the i-th

node. ei denotes the i-th edges, where the order of two
nodes of an edge denotes the direction of the edge. Nn
denotes the number of nodes, Ne denotes the number of
edges, and Na denotes the number of dimensions.

3.2 Node Clustering

The technique calculates distances between arbitrary
pairs of nodes, and then applies a clustering algorithm to
construct the hierarchy of the nodes. This section
describes the definition of node distance, and processing
flow of the node clustering algorithm.

3.2.1 Node Distance Calculation

The technique calculates two types of distances between
pairs of nodes: dissimilarity of feature vectors dvec , and
discommonality of the adjacent nodes dadj . It defines the
distance between a pair of nodes as

d =αdvec + (1.0−α)dadj
Here, α is a user-specified value satisfying
(0.0 ≤α ≤1.0) .
Dissimilarity of feature vectors
The technique simply calculates the similarity between
the two nodes as the inner product of the feature values.
We define the dissimilarity calculated from the inner
product as the distance between the two nodes dvec , by
the following equation.

dvec =1.0− inner
inner = ni ⋅nj / | ni || nj |

Discommonality of adjacent nodes
We define the discommonality of adjacent nodes simply
by the number of commonly connected nodes. To specify
the distance dadj between two nodes ni and nj , the

technique counts the number of nodes which are
connected to both ni and nj . It simply calculates the

distance as follows.
dadj =1.0 / (1+ nadj)

Here, nadj is the number of nodes connected to both the
nodes.

3.2.2 Hierarchical Clustering

Our implementation then constructs hierarchy of nodes
based on the above mentioned distances. Currently we
generate two-level node clusters by applying an
agglomerative clustering algorithm with the furthest
neighbor method.

This implementation assumes two thresholds α and β
(α < β) . This process firstly groups nodes while
satisfying the maximum distance α. This section calls the
level of the generated clusters as “cluster A”. The
process then groups the clusters while satisfying the
maximum distanceβ. This section calls the level of the

larger clusters as “cluster B”.

3.3 Node Layout

Our implementation calculates positions of nodes by the
following a bottom-up algorithm. It firstly calculates
positions of level A clusters belonging to a level B
cluster, and then calculates positions of level B clusters.
The second part of this algorithm is similar to the
implementation presented in [7].
Positions of level A clusters:
1. Generate a graph treating the level A clusters as

nodes. Weight the edges according to the number of
edges of the input graph connecting pairs of clusters,
so that tightly connected clusters are placed closely.

2. Calculate the radii of circles enclosing each of level
A clusters based on number of belonging nodes.

3. Apply a spring-force-based node layout algorithm to
the above mentioned graph to calculate the positions
of level A clusters.

4. Adjust distances between pairs of level A clusters
closer to the sum of radii by applying Laplacian
smoothing algorithm.

5. Calculate positions of nodes belonging to the level A
clusters.

Positions of level B clusters:
1. Generate a graph treating the level B clusters as

nodes. Weight the edges according to the number of
edges of the input graph connecting pairs of clusters,
so that tightly connected clusters are placed closely.

2. Apply the above mentioned node layout algorithm
for level A clusters belonging to each of level B
clusters.

3. Calculate radii of circles enclosing each of level B
clusters based on the node layout results of level A
clusters.

4. Adjust distances between pairs of level B clusters
closer to the sum of radii by applying Laplacian
smoothing algorithm.

5. Calculate positions of level A clusters belonging to
the level B clusters.

3.4 Edge Bundling

!
� !

�
!
� !

�
!
�A.#Edges#between#

#####two#clusters#of#nodes#

B.#Edges#of#pairs#of#bidirec7onal#
####bundles#connec7ng#to#the#
####same#pair#of#clusters.�

C.#Edges#of#pairs#of#bundles#
####that#or#end#at#same#cluster�

Figure 1. Conditions for edge bundling.

The presented edge bundling technique aims to satisfy
the three conditions illustrated in Figure 1. Our technique
firstly specifies sets of bundles to be clustered according
to Condition C. Then, it calculates shapes and thickness
of bundles taking all conditions into account. This
section describes the processing flow of bundle selection
and edge shape calculation.

3.4.1 Convergence of Bundles

The technique groups adjacent bundles connecting to the
same cluster by the following algorithm.
1. Select a cluster.
2. Select a bundle connecting to the cluster in the

clockwise order.
3. Calculate the later mentioned score the selected bundle

and its immediate left bundle, if they have the same
direction.

4. Group the above two bundles if the score is larger than
a user-specified threshold.

5. Repeat the similar process to all the clusters.
Here, as illustrated in Figure 2, our implementation
calculates the score of two adjacent bundles by the
following processing flow:
i. Angle between the two bundles
Let us assume nodes in cluster A are connected to nodes
in clusters B and C, and call centers of these clusters A,
B, and C. Also, let us call the segments connecting two
clusters AB and AC. The technique treats the score as
zero if the angle between AB and AC is larger than a
user-specified threshold.
ii. Length of convergable parts
The technique generates the bisector of AB and AC, and
then generates perpendicular segments from centers of
two clusters (B and C) connected to the bisector. Let us
call the intersections between the bisector and
perpendicular segments D and E. The technique then
calculates the lengths of AD and AE. We treat the
smaller length as the score of AB and AC, because the
distance denotes the convergable part of the two bundles.
In Figure 2, AE is the length of convergable parts.

Figure 2. Conditions for convergence of bundles.
Orange segment is the convergable part of the two
bundles.

3.4.2 Edge Drawing

This technique categorizes the edges of the input graph
into the following three patterns, and draws them as
Bezier curves according to these patterns.
i. Edges of bundles converged to other bundles
The technique places the control points of the Bezier
curves on the bisectors of the adjacent two bundles, as
illustrated in Figure 3(Left). Position of the control point
P1 is calculated by the following equation.

P1 = A(1−α)+Eα
Here, α is a user-specified value satisfying
(0.0 ≤α ≤1.0).
ii. Edges of pairs of bidirectional bundles connecting

to the same pair of clusters.
As illustrated in Figure 3(Right), the technique places the
control points of the Bezier curves on each side of CD,
which is the bisecting perpendicular segment of another
segment connecting the centers of clusters A and B. Here,
E is the midpoint of side AB and side CD. Positions of
the control points P2 and P3 are calculated by the
following equation.

P2 = E(1−β)+Cβ
P3 = E(1−β)+Dβ

Here, β is a user-specified value satisfying
(0.0 ≤ β ≤1.0).

Figure 3. Positions of control points of Bezier curves
for edge bundling. (Left) For edges of bundles
converged to other bundles. (Right) For edges of pairs
of bidirectional bundles connecting to the same pair
of bundles.

Figure 4. Positions of control points of Bezier curves
for edge bundling.

iii. Other Cases
The following processing flow is applied to the edges if
the above mentioned two patterns are not applicable. Our
implementation places two of the control points on the
segment connecting the centers of clusters, as shown in
Figure 4(Left), when we would like to tightly bundle the
edges. Otherwise, it first calculates the positions which
divide the two segments (one connects two nodes, and
the other connects centers of the clusters) into three
equal-sized parts. It then places the control points on the
segments connecting them. Figure 4(Right) illustrates
this process.

Position of the control pointsP4 and P5 are calculated
by the following equation.
if γ > 0.5 then r = (γ + 0.5)*2 / 3

P4 = Ar +B(1− r)
else r = γ *2

P5 = (A*2+B) / 3* r + (A '* 2+B ') / 3*(1− r)
Here, γ is a user-specified value satisfying (0.0 ≤ γ ≤1.0).

4. Case Study with Paper Citation Network

Figure 5. (Upper) Visualization where edges are
bundled based on level A clusters. (Lower) Zooming
to the cluster (a).

We applied a citation network dataset [10] consisting
of 1072 full papers presented at ACM SIGGRAPH
conferences during 1990 to 1994, and during 2000 to
2010, published by ACM Digital Library. We extracted

the title, publication year, abstract, references, and
authors from html files of the papers. This data have
1072 papers (nodes) and 5498 references (edges). Also,
we calculated 10 dimensional attribute values to each of
the papers from their abstracts by applying generative
topic model LDA (Latent Dirichlet Allocation).

4.1 Example of level A clusters

Figure 5 shows a visualization result where edges are
bundled based on level A clusters. Many edges
connected to nodes in the cluster (a) in Figure 5 are
conspicuously bundled. We can assume this cluster has
several important papers related to the topic depicted in
blue. We checked titles of papers in the cluster (a) and
found many papers related to fundamental illumination
methods belonged to. Especially, papers related to light
transport calculation algorithms, precomputed radiance
transfer, and tree structures for shadow calculation are
referred by large number of newer papers. The papers in
this cluster have mutual connections with several other
clusters because these fundamental methods might be
inspired by other research topics. We easily found such
important paper cluster by just looking at the
visualization result.

4.2 Example of level B clusters

Figure 6 shows a visualization result where edges are
bundled based on level B clusters. In this figure, many
edges connect pairs of nodes painted in the same colors,
which depict that many papers in same research topics
are referred. On the other hand, nodes painted in yellow-
green in the cluster (b) are referred by nodes in the
clusters (c), (d), and (e), painted in blue, green, or orange.
This is an interesting relationship because papers in the
cluster (b) is referred by other research topics.

Cluster (b) includes papers presenting automatic
texture generating and retouching techniques. In cluster
(c), papers related to 3D rendering techniques refer to
papers in cluster (b) because they need textures to map
on 3D models for realistic rendering. Furthermore,
papers related to image processing belonging to cluster
(d), and 3D modeling belonging to cluster (e), refer to
papers in cluster (b) for texture mapping with complete
images onto complex 3D models. These citation
relationship denotes that the topic of cluster (b) is so
general and fundamental that the techniques presented in
the paper of cluster (b) have been applied to variety of
studies.

On the other hand, it was a little bit time-consuming
task for us to understand the background of the above
mentioned citation relationships, because these clusters,
especially cluster (d) and (e), contained variety of
research topics. Therefore, we would like to review
clustering methods, or definition of multi-dimensional
attribute values and node distances.

Figure 6. (Upper) Visualization where edges are
bundled based on level B clusters. (Lower) Zooming
to the cluster (b).

5. Conclusions

This paper presented an edge bundling technique for
directed graphs. This technique deforms edges based on
the following three points: 1) bundling edges connecting
two nodes belonging to same pairs of clusters as ordinary
edge bundling techniques, 2) preserving proper distances
between bidirectional bundles between the same pairs of
clusters, and 3) converging adjacent bundles connecting
to the same cluster. This technique is especially effective
for directed graphs which have many mutually connected
edges. This paper presented a case study with a paper
citation network dataset, and discussed what kinds of
knowledge can be visualized.
 We have many future issues on this study. Regarding
edge bundling, we would like to firstly extend the
algorithm to calculate positions of control points of
Bezier curves. In addition to the conditions described in
Section 3.4, we would like to consider avoidance of
overlap between bundles and node clusters while
calculating positions of control points. Another problem
is selection of adjacent bundles to be converged. Our
current implementation is based on a greedy algorithm,

and therefore it does not always optimize the selection
result. We would like to develop another algorithm
which really finds optimal selection results.

Node layout can be also improved. We would like to
develop rotation of node clusters [11] so that the total
lengths of edges is minimized. It is also an interesting
problem how to optimize cluster layouts with the edge
bundling presented in this paper.

After improving the technique as above mentioned, we
would like to have more case studies with real-world
directed graph datasets, and experimental user
evaluations.

References

[1] D. Holten, “Hierarchical Edge Bundles: Visualization of
Adjacency Relations in Hierarchical Data”, IEEE Trans.
on Visualization and Computer Graphics, Vol. 12, No. 5,
pp. 741-748, 2006.

[2] D. Selassie, B. Heller, J. Heer, “Divided Edge Bundling
for Directional Network Data”, IEEE Trans. on
Visualization and Computer Graphics, Vol. 17, No. 12,
pp. 2354-2363, 2011.

[3] D. Holten, J. J. van Wijk, “Force-Directed Edge Bundling
for Graph Visualization”, Computer Graphics Forum, Vol.
28. No. 3. 2009.

[4] O. Ersoy, C. Hurter, F. V. Paulovich, G. Cantareira, A.
Telea, “Skeleton-based edge bundling for graph
visualization”, IEEE Trans. on Visualization and
Computer Graphics, Vol. 17, No. 12, pp. 2364-2373,
2011.

[5] S.-J. Luo, C.-L. Liu, B.-Y. Chen, K.-L. Ma, “Ambiguity-
Free Edge-Bundling for Interactive Graph Visualization”,
IEEE Trans. on Visualization and Computer Graphics,
Vo.18, No. 5, pp. 810-821, 2011.

[6] S. E. Schaeffer, “Graph Clustering”, Computer Science
Review, Vol. 1, No. 1, pp. 27-64, 2007.

[7] T. Itoh, K. Klein, “Key-node-Separated Graph Clustering
and Layout for Human Relationship Graph
Visualization”, IEEE Computer Graphics and
Applications, Vol. 35, No. 6, pp. 30-40, 2015.

[8] K. Sugiyama, S. Tagawa, M. Toda, “Method for Visual
Understanding of Hierarchical System Structures”, IEEE
Trans. on Systems, Man, and Cybermetics, Vol. 11, No. 2,
pp. 109-125, 1981.

[9] T. Dwyer, Y. Koren, Dig-CoLa: Directed Graph Layout
through Constrained Energy Minimization”, IEEE
Symposium on Information Visualization, pp. 65-72,
2005.

[10] R. Nakazawa, T. Itoh, T. Saito, “A Visualization of
Research Papers Based on the Topics and Citation
Network”, 18th International Conference on Information
Visualisation (IV2015), pp. 283-289, 2015.

[11] D. Archambault, T. Munzner, D. Auber, “TopoLayout:
Multilevel Graph Layout by Topological Features”, IEEE
Trans. on Visualization and Computer Graphics, Vol. 13,
No. 2, pp. 305-317, 2007.

