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Abstract 
Directed graphs are used to represent variety of 
information, including friendship on social networking 
services (SNS), pathways of genes, and citations of 
research papers. Graph drawing is useful to intuitively 
represent such datasets. This paper presents an edge 
bundling and a node layout technique for tightly and 
mutually connected directed graphs. Our edge bundling 
technique includes three features: ordinary bundling of 
edges connecting common pairs of node clusters, 
convergence of multiple bundles connecting to the same 
node cluster, and shape adjustment of two bundles 
connecting the same pair of node clusters. This paper 
includes a case study with a directed paper citation 
graph. 
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1. Introduction 

A variety of information in academic and industry fields 
can be represented as directed graphs. For example, 
friendships on social networking services (SNS) can be 
retrieved via Web APIs and constructed as directed 
graphs. Pathways of genes are accessible on open 
databases and therefore we can construct directed 
pathway graphs. Paper citation networks are also typical 
directed graphs which can be constructed from open 
information on digital libraries of academic societies. 

Graph drawing techniques are useful to intuitively 
represent the structures of such directed graphs. Many 
applications exist to visualize friendships on social 
networking services or visualize gene pathways or gene-
gene interactions. In our observation, many of these 
software packages feature general graph drawing 
algorithms which can be applied to undirected graphs. 
Development of directed-graph-specific drawing 
algorithms is still an interesting problem. 

Edge bundling for comprehensive graph drawing has 
been an active topic for recent years. There have been 
many techniques [1-4]. However, many of them mainly 
support undirected graphs and not directed graphs. In 
contrast to many of edge bundling techniques gather 

edges at their centers, it is also effective to converge 
edges at their end points [5]. It should be more effective 
if these approaches are appropriately combined. 

This paper presents edge bundling and node layout 
techniques for drawing tightly and mutually connected 
directed graphs. Our implementation firstly constructs 
hierarchy of nodes by recursively applying a graph 
clustering algorithm, and then applies a node layout 
algorithm to calculate positions of the nodes. Our 
implementation applies a directed-graph-specific edge 
bundling algorithm to effectively represent connectivity 
among node clusters. The algorithm firstly bundles edges 
connecting pairs of nodes belonging to the same clusters. 
We may generate two bundles between a pair of node 
clusters according to the directions of edges. The	 
bundling algorithm then converges multiple bundles 
departing from or arriving to the same node cluster. Also, 
it adjusts shapes of two bundles connecting the same pair 
of node clusters. 

We designed node clustering and layout algorithms so 
that our edge bundling algorithms for directed graphs 
work effectively. The node clustering algorithm groups 
nodes which have many edges connected to the same 
node preferentially, because this strategy bundles more 
edges. The node layout algorithm calculates weights of 
connections between a pair of node clusters according to 
the smaller number of edges of up to two bundles 
connecting the clusters, so that tightly connected clusters	 
are placed nearby. 

This paper presents a case study using a paper citation 
network dataset retrieved from ACM Digital Library, 
and discusses the effectiveness of the presented 
technique. 

2. Related Work 

Edge bundling has been an active topic that improves the 
comprehensibility of drawing complex graphs, which 
integrates constitutively or positionally similar edges and 
draws them as bundles.  Holten [1] presented a 
hierarchical edge bundling technique, which 
hierarchically groups edges connecting nodes belonging 
to same pairs of clusters. This technique mainly supposes 
undirected graphs, and therefore it does not feature 
directed-graph-specific processes. Also, this technique 



selects edges to be grouped according to the hierarchy of 
nodes: it does not consider their positions. On the other 
hand, several other edge bundling techniques, presented 
by Selassie et al. [2],  Holten et al. [3] and Ersoy et al. 
[4], group positionally and directionally similar edges. 
Again, most of these techniques mainly assume 
undirected graphs. 

In contrast to that many edge bundling techniques 
gathers the edges at their midpoints, it is also effective to 
converge them at their end points.  For example, Luo et 
al. [5] presented a technique to draw edges as curves to 
converge them at their end points to avoid bundle 
ambiguity. However, the technique does not assume a 
hierarchy. In contrast to these techniques, this paper 
presents a directed graph visualization technique that 
cluster nodes, bundle edges at these end points and 
avoids edge ambiguity. 

Graph clustering is a key technique that makes graph 
drawing more effective and comprehensive. Actually 
there have been large number of clustering algorithms 
introduced by several survey papers [6]. Though finding 
densely connected components is definitely the most 
popular approach for graph clustering, other approaches 
are also effective if we want to maximize the number of 
edges to be bundled. Itoh et al. [7] applied edge-
adjacency and node-similarity based graph clustering to 
make large number of edges bundled and separate key 
nodes from large clusters. The technique presented in 
this paper also applies the same clustering algorithm. 

Meanwhile, there have been many tree-visualization-
like techniques that operate on directed acyclic graphs 
[8][9], which places nodes based on distances from the 
starting node. We did not apply this approach since it 
does not often work well for dense graphs. Instead, we 
applied general algorithms for graph clustering and node 
layout, and extended the edge bundling technique for 
mutually connected directed graphs. 

3. Presented Visualization Tool 

This section presents the data structure and processing 
flow of the presented technique. 

3.1 Data Structure 

This paper defines the data structure of an input graph 
G consisting of a set of nodes N and edges E as follows: 

 
G = {N,E}  
N = {n1,...,nNn

}  

E = {e1,...,eNe
}  

ni = {ai1,...,aiNa}  

ei = {ni,nk}  
 

Here, ni denotes the i-th node. We suppose that a node 
has a multi-dimensional attribute value, where 
aij denotes the value of the j-th dimension of the i-th 

node. ei  denotes the i-th edges, where the order of two 
nodes of an edge denotes the direction of the edge. Nn  
denotes the number of nodes, Ne denotes the number of 
edges, and Na  denotes the number of dimensions.  

3.2 Node Clustering 

The technique calculates distances between arbitrary 
pairs of nodes, and then applies a clustering algorithm to 
construct the hierarchy of the nodes. This section 
describes the definition of node distance, and processing 
flow of the node clustering algorithm.  

3.2.1 Node Distance Calculation 

The technique calculates two types of distances between 
pairs of nodes: dissimilarity of feature vectors dvec , and 
discommonality of the adjacent nodes dadj . It defines the 
distance between a pair of nodes as 

d =αdvec + (1.0−α)dadj  
Here, α  is a user-specified value satisfying 
( 0.0 ≤α ≤1.0 ) . 
Dissimilarity of feature vectors 
The technique simply calculates the similarity between 
the two nodes as the inner product of the feature values. 
We define the dissimilarity calculated from the inner 
product as the distance between the two nodes dvec , by 
the following equation. 

dvec =1.0− inner  
inner = ni ⋅nj / | ni || nj |  

Discommonality of adjacent nodes 
We define the discommonality of adjacent nodes simply 
by the number of commonly connected nodes. To specify 
the distance dadj  between two nodes ni  and nj , the 

technique counts the number of nodes which are 
connected to both ni  and nj . It simply calculates the 

distance as follows. 
dadj =1.0 / (1+ nadj )  

Here, nadj  is the number of nodes connected to both the 
nodes. 

3.2.2 Hierarchical Clustering 

Our implementation then constructs hierarchy of nodes 
based on the above mentioned distances. Currently we 
generate two-level node clusters by applying an 
agglomerative clustering algorithm with the furthest 
neighbor method. 

This implementation assumes two thresholds α  and β  
(α < β) . This process firstly groups nodes while 
satisfying the maximum distance α. This section calls the 
level of the generated clusters as “cluster A”. The 
process then groups the clusters while satisfying the 
maximum distanceβ. This section calls the level of the 



larger clusters as “cluster B”. 

3.3 Node Layout 

Our implementation calculates positions of nodes by the 
following a bottom-up algorithm. It firstly calculates 
positions of level A clusters belonging to a level B 
cluster, and then calculates positions of level B clusters. 
The second part of this algorithm is similar to the 
implementation presented in [7]. 
Positions of level A clusters: 
1. Generate a graph treating the level A clusters as 

nodes. Weight the edges according to the number of 
edges of the input graph connecting pairs of clusters, 
so that tightly connected clusters are placed closely. 

2. Calculate the radii of circles enclosing each of level 
A clusters based on number of belonging nodes. 

3. Apply a spring-force-based node layout algorithm to 
the above mentioned graph to calculate the positions 
of level A clusters. 

4. Adjust distances between pairs of level A clusters 
closer to the sum of radii by applying Laplacian 
smoothing algorithm. 

5. Calculate positions of nodes belonging to the level A 
clusters. 

Positions of level B clusters: 
1. Generate a graph treating the level B clusters as 

nodes. Weight the edges according to the number of 
edges of the input graph connecting pairs of clusters, 
so that tightly connected clusters are placed closely.  

2. Apply the above mentioned node layout algorithm 
for level A clusters belonging to each of level B 
clusters. 

3. Calculate radii of circles enclosing each of level B 
clusters based on the node layout results of level A 
clusters. 

4. Adjust distances between pairs of level B clusters 
closer to the sum of radii by applying Laplacian 
smoothing algorithm. 

5. Calculate positions of level A clusters belonging to 
the level B clusters. 

3.4 Edge Bundling 
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Figure 1. Conditions for edge bundling. 

 
The presented edge bundling technique aims to satisfy 
the three conditions illustrated in Figure 1. Our technique 
firstly specifies sets of bundles to be clustered according 
to Condition C. Then, it calculates shapes and thickness 
of bundles taking all conditions into account. This 
section describes the processing flow of bundle selection 
and edge shape calculation. 

3.4.1 Convergence of Bundles 

The technique groups adjacent bundles connecting to the 
same cluster by the following algorithm.  
1. Select a cluster. 
2. Select a bundle connecting to the cluster in the 

clockwise order. 
3. Calculate the later mentioned score the selected bundle 

and its immediate left bundle, if they have the same 
direction.  

4. Group the above two bundles if the score is larger than 
a user-specified threshold. 

5. Repeat the similar process to all the clusters. 
Here, as illustrated in Figure 2, our implementation 
calculates the score of two adjacent bundles by the 
following processing flow: 
i. Angle between the two bundles 
Let us assume nodes in cluster A are connected to nodes 
in clusters B and C, and call centers of these clusters A, 
B, and C. Also, let us call the segments connecting two 
clusters AB and AC. The technique treats the score as 
zero if the angle between AB and AC is larger than a 
user-specified threshold. 
ii. Length of convergable parts 
The technique generates the bisector of AB and AC, and 
then generates perpendicular segments from centers of 
two clusters (B and C) connected to the bisector. Let us 
call the intersections between the bisector and 
perpendicular segments D and E. The technique then 
calculates the lengths of AD and AE. We treat the 
smaller length as the score of AB and AC, because the 
distance denotes the convergable part of the two bundles. 
In Figure 2, AE is the length of convergable parts. 
 

 
 

Figure 2. Conditions for convergence of bundles. 
Orange segment is the convergable part of the two 
bundles. 



3.4.2 Edge Drawing 

This technique categorizes the edges of the input graph 
into the following three patterns, and draws them as 
Bezier curves according to these patterns. 
i. Edges of bundles converged to other bundles 
The technique places the control points of the Bezier 
curves on the bisectors of the adjacent two bundles, as 
illustrated in Figure 3(Left).  Position of the control point 
P1  is calculated by the following equation.  

P1 = A(1−α)+Eα  
Here, α  is a user-specified value satisfying 
( 0.0 ≤α ≤1.0 ). 
ii. Edges of pairs of bidirectional bundles connecting 

to the same pair of clusters.  
As illustrated in Figure 3(Right), the technique places the 
control points of the Bezier curves on each side of CD, 
which is the bisecting perpendicular segment of another 
segment connecting the centers of clusters A and B. Here, 
E is the midpoint of side AB and side CD. Positions of 
the control points P2  and P3  are calculated by the 
following equation. 

P2 = E(1−β)+Cβ  
P3 = E(1−β)+Dβ  

Here, β  is a user-specified value satisfying 
( 0.0 ≤ β ≤1.0 ).  
 

 
Figure 3. Positions of control points of Bezier curves 
for edge bundling. (Left) For edges of bundles 
converged to other bundles. (Right) For edges of pairs 
of bidirectional bundles connecting to the same pair 
of bundles.  

 

 
Figure 4. Positions of control points of Bezier curves 
for edge bundling.  

 
iii. Other Cases 
The following processing flow is applied to the edges if 
the above mentioned two patterns are not applicable. Our 
implementation places two of the control points on the 
segment connecting the centers of clusters, as shown in 
Figure 4(Left), when we would like to tightly bundle the 
edges. Otherwise, it first calculates the positions which 
divide the two segments (one connects two nodes, and 
the other connects centers of the clusters) into three 
equal-sized parts. It then places the control points on the 
segments connecting them. Figure 4(Right) illustrates 
this process. 

Position of the control pointsP4  and P5  are calculated 
by the following equation. 
if   γ > 0.5   then  r = (γ + 0.5)*2 / 3   

P4 = Ar +B(1− r)  
else  r = γ *2  

P5 = (A*2+B) / 3* r + (A '* 2+B ') / 3*(1− r)  
Here, γ  is a user-specified value satisfying (0.0 ≤ γ ≤1.0 ).  

4. Case Study with Paper Citation Network 

 

 
Figure 5. (Upper) Visualization where edges are 
bundled based on level A clusters. (Lower) Zooming 
to the cluster (a). 

We applied a citation network dataset [10] consisting 
of 1072 full papers presented at ACM SIGGRAPH 
conferences during 1990 to 1994, and during 2000 to 
2010, published by ACM Digital Library. We extracted 



the title, publication year, abstract, references, and 
authors from html files of the papers.  This data have 
1072 papers (nodes) and 5498 references (edges). Also, 
we calculated 10 dimensional attribute values to each of 
the papers from their abstracts by applying generative 
topic model LDA (Latent Dirichlet Allocation).   
 

4.1 Example of level A clusters  

Figure 5 shows a visualization result where edges are 
bundled based on level A clusters. Many edges 
connected to nodes in the cluster (a) in Figure 5 are 
conspicuously bundled. We can assume this cluster has 
several important papers related to the topic depicted in 
blue. We checked titles of papers in the cluster (a) and 
found many papers related to fundamental illumination 
methods belonged to. Especially, papers related to light 
transport calculation algorithms, precomputed radiance 
transfer, and tree structures for shadow calculation are 
referred by large number of newer papers. The papers in 
this cluster have mutual connections with several other 
clusters because these fundamental methods might be 
inspired by other research topics. We easily found such 
important paper cluster by just looking at the 
visualization result. 

4.2 Example of level B clusters  

Figure 6 shows a visualization result where edges are 
bundled based on level B clusters. In this figure, many 
edges connect pairs of nodes painted in the same colors, 
which depict that many papers in same research topics 
are referred. On the other hand, nodes painted in yellow-
green in the cluster (b) are referred by nodes in the 
clusters (c), (d), and (e), painted in blue, green, or orange. 
This is an interesting relationship because papers in the 
cluster (b) is referred by other research topics. 

Cluster (b) includes papers presenting automatic 
texture generating and retouching techniques. In cluster 
(c), papers related to 3D rendering techniques refer to 
papers in cluster (b) because they need textures to map 
on 3D models for realistic rendering. Furthermore, 
papers related to image processing belonging to cluster 
(d), and 3D modeling belonging to cluster (e), refer to 
papers in cluster (b) for texture mapping with complete 
images onto complex 3D models. These citation 
relationship denotes that the topic of cluster (b) is so 
general and fundamental that the techniques presented in 
the paper of cluster (b) have been applied to variety of 
studies. 

On the other hand, it was a little bit time-consuming 
task for us to understand the background of the above 
mentioned citation relationships, because these clusters, 
especially cluster (d) and (e), contained variety of 
research topics. Therefore, we would like to review 
clustering methods, or definition of multi-dimensional 
attribute values and node distances. 

 

 
Figure 6. (Upper) Visualization where edges are 
bundled based on level B clusters. (Lower) Zooming 
to the cluster (b). 

 

5. Conclusions 

This paper presented an edge bundling technique for 
directed graphs. This technique deforms edges based on 
the following three points: 1) bundling edges connecting 
two nodes belonging to same pairs of clusters as ordinary 
edge bundling techniques, 2) preserving proper distances 
between bidirectional bundles between the same pairs of 
clusters, and 3) converging adjacent bundles connecting 
to the same cluster. This technique is especially effective 
for directed graphs which have many mutually connected 
edges. This paper presented a case study with a paper 
citation network dataset, and discussed what kinds of 
knowledge can be visualized. 
  We have many future issues on this study. Regarding 
edge bundling, we would like to firstly extend the 
algorithm to calculate positions of control points of 
Bezier curves. In addition to the conditions described in 
Section 3.4, we would like to consider avoidance of 
overlap between bundles and node clusters while 
calculating positions of control points. Another problem 
is selection of adjacent bundles to be converged. Our 
current implementation is based on a greedy algorithm, 



and therefore it does not always optimize the selection 
result. We would like to develop another algorithm 
which really finds optimal selection results.  

Node layout can be also improved. We would like to 
develop rotation of node clusters [11] so that the total 
lengths of edges is minimized. It is also an interesting 
problem how to optimize cluster layouts with the edge 
bundling presented in this paper. 

After improving the technique as above mentioned, we 
would like to have more case studies with real-world 
directed graph datasets, and experimental user 
evaluations. 
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