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Abstract

Although delimited control operators are becoming one of the useful tools to manipulate
flow of programs, their direct and compiled implementation in a low-level language has not
been proposed so far. The only direct and low-level implementations available are Gasbichler
and Sperber’s implementation in the Scheme 48 virtual machine and Kiselyov’s implementation
in the OCaml bytecode. Even though these implementations do provide an insight into how stack
frames are composed, they are not directly portable to compiled implementation at the assembly
language. This paper presents a direct implementation of delimited control operators shift
and reset in the MinCaml compiler. It shows all the details of how composable continuations
can be implemented in the PowerPC microprocessor using the stack strategy. We also show
an implementation that copies the stack frames lazily. To our knowledge, this is the first
implementation of shift/reset in the assembly language. It makes clear at the assembly
language level what we have informally described so far, such as “copying and composing stack
frames” and “inserting a reset mark when captured continuations are called”. We demonstrate
various benchmarks to show the performance of the direct implementation and discuss its pros
and cons.

1 Introduction

A continuation is a notion of the rest of the work to be done after the current calculation. By ma-
nipulating continuations, we obtain control over flow of evaluation. Well-known examples of using
continuations include exception handling, non-local jump from nested function calls, coroutines,
non-deterministic programming [5], the typed printf function [2], dynamic code generation [11],
and let-insertion in partial evaluation [1].

To provide users with the ability to manipulate continuations without changing the program
globally into continuation-passing style (CPS), various control operators have been proposed, such
as call/cc found in Scheme [14] (and Ruby [13]), control/prompt [8], and shift/reset [5].

Among them, this paper focuses on the delimited control operators, shift and reset, intro-
duced by Danvy and Filinski and shows their direct implementation at the PowerPC assembly
language level in the MinCaml compiler [15]. The current goals and contributions of our research
are twofold:

1. to establish how to implement composable continuations in the low-level language

It has been long said that composable continuations can be implemented by “cutting and copying
stack frames up to a reset mark” and “reinstating the frames back to the stack top”. These informal
statements help us understand the behavior of composable continuations, but the relationship to
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the actual implementation in a low-level language is not at all obvious. In particular, a stack in the
real implementation typically contains the return address of a functional call. Without showing
how to connect the call chains of functions, we cannot implement composable continuations in a
low-level language.

Our first contribution is to present all the details of how shift/reset can be implemented
in the PowerPC assembly language using the stack strategy. Although written in the assembly
language, the implementation is simple enough for general audience, showing the essence of the
implementation. Because of its simplicity, we think that the presented implementation can serve
as a reference implementation of shift/reset.

We employ the raw PowerPC assembly language rather than other higher-level assembly lan-
guages, such as C-- [12], because another level of abstraction introduced by such languages could
hide subtle but important implementation details of shift/reset.

2. to provide a testbed on which performance and implementation methods of shift/reset can
be discussed

Emulated implementation of shift/reset, such as Filinski’s implementation in terms of call/cc
[9] suffers from the efficiency problem. Gasbichler and Sperber reported that emulating shift/reset
using call/cc leads to significant performance penalty compared to the direct implementation [10].
Thus, for wider uses of shift/reset, it is mandatory to provide an efficient implementation. Fur-
thermore, the lack of a direct implementation prohibits us from discussing on the efficiency of
programs using shift/reset.

Our second contribution is to provided a testbed on which we can discuss the performance of
programs with shift/reset as well as implementation methods of shift/reset. Only through ex-
periments performed on the direct implementation can we compare if a program with shift/reset
is faster or slower than its CPS counterpart. We can also investigate various other implementation
strategies based on the one shown in the paper for better performance. As an example, we show
the lazy implementation in this paper.

We do not intend that the two implementations shown here are the ideal implementations
of shift/reset. The present work is still ongoing, and lacks some important aspects, such as
garbage collection. However, we believe that the paper sets out the basic platform from which
various implementations can be built and compared. More sophisticated techniques become only
possible through a clear and succinct base implementation, which this paper offers.

Overview

The paper is organized as follows. Section 2 introduces the delimited continuation constructs
shift/reset and shows some examples. Section 3 presents an outline of the MinCaml compiler,
which our direct implementation is based on. Section 4 describes the direct implementation of
shift/reset in the MinCaml compiler and shows some benchmarks. Section 5 gives the lazy
implementation as an alternative implementation together with another benchmarks. Section 6
shows related work, and Section 7 concludes. Appendix A briefly reviews PowerPC’s instructions
used in the paper.

2 Shift and Reset

Figure 1 shows the continuation semantics of the lambda calculus extended with shift/reset [6, 7].
The expression shift(λk.M) captures the current continuation κ, binds it to k, and executes the
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[[x]] = λκ.κ x
[[λx.M ]] = λκ.κ (λx.[[M ]])
[[M N ]] = λκ.[[M ]] (λm.[[N ]] (λn.m n κ))

[[shift(λk.M)]] = λκ.([[M ]] (λm.m))[k 7→ λa.λκ′.κ′(κ a)]
[[reset(λ M)]] = λκ.κ ([[M ]] (λm.m))

Figure 1: Continuation semantics and shift/reset.

expression M with an empty continuation—the identity function. The expression reset(λ .M)
executes the expression M with an empty continuation and passes the return value to the contin-
uation κ of reset. Intuitively, shift captures the current continuation and reset delimits the
scope of the continuation captured by shift. For example:

1 + reset (fun () -> 2 * shift (fun k -> 3 + k 4))
⇒ 1 + (3 + 2 * 4)
⇒ 12

In this expression, shift captures the continuation 2 * [].
We can use shift/reset to write interesting programs. The following function times is one

of the simplest examples. It calculates a product of a given list of integers. We can define this
function as follows:

let rec times lst = match lst with
| [] -> 1
| a :: rest -> if a = 0 then 0 else a * time rest

Thus, times [1; 2; 3; 4] evaluates to 24, while times [0; 1; 2; 3] immediately evaluates to
0. However, times [1; 2; 0; 3] evaluates to 1 * 2 * 0 and we have to calculate this expression
to obtain 0, although we know the answer will be 0 immediately after we find 0 in the given list.

One of the ways to avoid this unnecessary calculation is to rewrite times in CPS:

let rec times0 lst k = match lst with
| [] -> k 1
| a :: rest -> if a = 0 then 0 (* k is discarded *)

else times0 rest (fun x -> k (a * x)) in
let rec times lst = times0 lst (fun x -> x)

Since the calculation is saved in the form of continuations, we can throw away the calculation by
not using k (the then clause in the above program). To achieve the same effect without changing
whole the program into CPS, we use shift/reset:

let rec times0 lst = match lst with
| [] -> 1
| a :: rest -> if a = 0 then shift (fun k -> 0) (* k is discarded *)

else a * times0 rest in
let rec times lst = reset (fun () -> times0 lst)
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This definition is almost the same as the original definition. The only difference between the two
definitions is in the then clause. In this definition, if 0 is found in the given list, shift captures
the current continuation in k and discards it. Using shift/reset, we can handle continuations
freely in direct style.

Although the same effect can be realized by exceptions, there are various applications that
cannot be expressed using exceptions but require the full expressiveness of shift/reset [2, 5, 6].

3 The MinCaml Compiler

The MinCaml compiler [15], implemented by Eijiro Sumii, is a compiler for educational purposes
that achieves two conflicting goals: simplicity (for easy understanding of the internals of compilers)
and reasonable efficiency. The compiler consists of only 2000 lines of OCaml code, yet it produces
assembly code comparable to that of OCamlOpt and GCC. Because of these features, the MinCaml
compiler serves as an ideal platform for implementing and testing new features such as delimited
continuations.

The source language of MinCaml is a subset of ML, consisting of integers, floating-point num-
bers, booleans, tuples, arrays, variable definitions, recursive function definitions, function appli-
cations, and so on, in the syntax of OCaml. The original MinCaml compiler generates SPARC
assembly, but we have ported it to PowerPC. In this section, we briefly describe the overview of
MinCaml compiler, and show the necessary background for the direct implementation of shift and
reset as well as the required extension to the compiler.

Lexical analysis and parsing. We extended a parser and a lexer to accept shift/reset ex-
pressions (and lists): shift (fun <var> -> <exp>) and reset (fun () -> <exp>).

Type inference. The original MinCaml compiler uses a monomorphic type system for simplicity.
In the presence of shift/reset, however, the answer type polymorphism is critical for many
applications. Thus, we implemented Asai and Kameyama’s type system [3], which supports let-
polymorphism, answer type polymorphism, and answer type modification.

K-normalization and optimizations. After the type inference, the compiler transforms ex-
pressions into K-normal form1 to assign unique names to all the subexpressions. For example,
shift (fun k -> M) is changed to let rec s k = M in shift s and reset (fun () -> M)
is changed to let rec r () = M in reset r2, where s and r are fresh variables. After this trans-
formation, the two identifiers shift and reset are treated as ordinary external functions.

The compiler performs various optimizations, such as constant folding, useless variable elimina-
tion, and inline expansion. Although the MinCaml compiler supports rather simple optimizations
only, their repeated application yields reasonably optimized code, achieving simplicity and efficiency
at the same time. The addition of shift/reset does not affect the optimization phase.

Closure conversion. Nested function definitions are converted into closures holding free vari-
ables. Each closure consists of a code pointer and a list of free variables. For a function with no

1K-normal form is like A-normal form but allows nested let-expressions. See [15] for their comparison in the
context of MinCaml.

2We use let rec instead of let, because MinCaml supports recursive function definitions only.
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free variables, a closure is not constructed but a code pointer itself is used if the function is not
used as a value.

After this, expressions are converted to virtual machine code.

Register allocation. The PowerPC microprocessor has 32 general-purpose 32-bit registers, among
which two registers are reserved by the operating system (e.g., as a system stack pointer). Thus,
there are 30 registers available. Among them, the MinCaml compiler reserves: R sp (a stack
pointer) and R hp (a heap pointer). The remaining 28 registers are referred to as R i, starting from
R 0.

The calling convention of the MinCaml compiler is as follows:

• Arguments to a function are stored in R 0, R 1, · · ·, where R 0 holds the first argument, and
so on.

• The result of a function is stored in R 0.

• For closure applications, the address of the closure is stored in R cl (chosen arbitrarily from
28 registers).

Assembly generation. This is the final phase of the compiler. Assembly code is generated from
the virtual machine code in a straightforward manner except for function applications and closure
creations.

To call a function, live variables that are required after the call as well as the return address
have to be saved in the stack. When the function returns, they are restored back from the stack.
In addition, if a closure is called, the address of the closure is stored in R cl to satisfy the calling
convention.

To create a closure, memory is allocated in the heap to store the free variables and the code
pointer. Because tuples, arrays, and closures are allocated in the heap, values allocated in the stack
are either immediate values, pointers to the heap, or return addresses, which are all immutable.
Thus, it is always safe to copy the contents of the stack.

To realize subroutine calls, PowerPC makes use of a special-purpose register called the link
register (LR). Whenever a function is called (using bctrl3), the next address is stored in the link
register as a return address. By executing blr (Branch Link Register) in the called function, the
control is transferred back to the address stored in the link register. Since the value of the link
register is updated at bctrl, the old value needs to be saved in the stack.

Tail calls are detected in this phase. If a function call is a tail call, the compiler yields code
that does not save the return address but jumps to the function directly.

4 Direct Implementation

By interpreting a program using the continuation semantics, we can regard the state of the program
as a continuation stack. Then, reset can be thought of as marking the continuation stack, and
shift capturing the continuation stack up to the nearest mark created by reset.

Here is the overview of our implementation:

• When calling reset, set a reset mark to the stack.

3See Appendix A for the PowerPC assembly language.
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Figure 2: The behavior of the stack when executing reset.

• When calling shift (fun k -> M), move a part of the stack frames up to the nearest reset
mark to the heap.

• When calling a continuation k, set a reset mark to the stack and copy the corresponding
frames from the heap to the stack top.

A reset mark is inserted when k is called, because captured continuations are executed in an empty
continuation.

In our implementation, we reserve one register R rp as a reset pointer (rp). Reserving a dedi-
cated register for a reset pointer could be costly in the Intel processor where the number of available
registers is severely restricted. In PowerPC and SPARC, however, there are relatively many general-
purpose registers, and we expect that the effect of using a reset pointer is not prohibitive.

In the rest of this section, we describe the implementation in detail.

4.1 Reset

When reset is called with an argument function r (a thunk), a reset mark is set in the stack.
Setting the reset mark is realized by pushing the return address to the stack (to preserve the
context around reset), and storing and updating the reset pointer by the stack pointer (to execute
the argument function of reset in an empty continuation). We regard the stack address rp points
to as the reset mark. In our implementation, the return address and the old reset pointer always
reside at the bottom of delimited continuations. We maintain this invariant when we manipulate
the stack in the following subsections.

The external function reset is implemented as follows (Figure 2):

(1) Push the return address (RA) to the stack.

(2) Store rp to the stack and update rp.

(3) Call the argument function r of reset.

When r returns, the continuation in which reset was executed is restored.

(4) Restore the return address and rp from the stack.

(5) Jump to the restored return address.

Notice that the steps (4) and (5) might not be executed, because the argument function r can
capture the continuation and discard it. Thus, we have to make sure that the correct continuation
is always restored when the argument function r finishes its execution.

The PowerPC code for reset taken verbatim from the implementation follows (R tmp is chosen
arbitrarily from 28 general-purpose registers):
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Figure 3: The behavior of the stack and the heap when executing shift.

.globl min_caml_reset1

min_caml_reset:2

mflr R_tmp ; (1)3

stw R_tmp, 0(R_sp) ; store RA4

stw R_rp, 4(R_sp) ; (2) store rp5

addi R_rp, R_sp, 4 ; update rp6

addi R_sp, R_sp, 87

mr R_cl, R_0 ; (3)8

lwz R_tmp, 0(R_cl)9

mtctr R_tmp10

bctrl ; call r11

subi R_sp, R_sp, 8 ; (4)12

lwz R_tmp, 0(R_sp)13

mtlr R_tmp ; restore RA14

lwz R_rp, 4(R_sp) ; restore rp15

blr ; (5)16

This code exactly corresponds to the above five steps. At line 3, the link register (which holds
the return address of reset) is extracted and pushed on to the stack (line 4). At lines 5 and 6, the
reset pointer is stored and updated to the top of the stack. At line 8, R 0 (the first argument of
reset) holds the argument closure r of reset and moves that value to R cl (to satisfy the calling
convention), which is called at line 11. When the function returns, the return address and the reset
pointer are restored and the execution goes back to the restored return address.

4.2 Shift

When shift is called with an argument s (typically of the form (fun k -> M)), stack frames are
cleared (up to rp) and moved to the heap to create a closure for the captured continuation. The
external function shift is implemented as follows (Figure 3):

(1) Move the stack frames up to rp (excluding rp) to the heap.

Since the frame rp points to is not moved, the cleared stack has the old reset pointer and the return
address at the top. In other words, the stack is in the same state as when the reset was executed.

(2) Make the closure for the continuation function k with the information on the frames and the
return address of shift.
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As depicted in Figure 4, the closure for the continuation function k consists of the top and the
bottom addresses of the moved frames, the return address of shift (to be executed when the
captured continuation k is called), and the code pointer to k (see Section 4.3). The closure for k
represents the continuation up to the enclosing reset. In particular, the last instructions k will
execute are the steps (4) and (5) of reset. Thus, when we call k, we have to properly set the
return address and the reset pointer at the call to k to compose k with the surrounding context
(see Section 4.3).

(3) Set k as the first argument and call the argument function s of shift on the cleared stack
(i.e., the empty continuation).

When s returns, it means that the work to be done in the current context is finished and the
reset mark is at the top of the stack. To restore the outer context, we repeat the steps (4) and (5)
of reset here.

(4) Restore the return address and rp from the stack.

(5) Jump to the restored return address.

The PowerPC code for shift follows:

.globl min_caml_shift1

min_caml_shift:2

mr R_cl, R_03

;; (1) move the frames from the stack to the heap4

mr R_0, R_rp ; current rp5

mr R_2, R_hp6

subi R_hp, R_hp, 47

to_heap_loop:8

lwzu R_tmp, 4(R_0) ; from the stack9
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cmpw cr7, R_0, R_sp10

beq cr7, to_heap_exit11

stwu R_tmp, 4(R_hp) ; to the heap12

b to_heap_loop13

to_heap_exit:14

addi R_hp, R_hp, 415

addi R_sp, R_rp, 416

mr R_0, R_hp ; (2) closure k17

addi R_hp, R_hp, 1618

lis R_1, ha16(min_caml_k)19

addi R_1, R_1, lo16(min_caml_k)20

mflr R_tmp21

stw R_1, 0(R_0) ; code pointer to k22

stw R_tmp, 4(R_0) ; RA of shift23

stw R_2, 8(R_0) ; bottom address24

stw R_0, 12(R_0) ; top address25

lwz R_tmp, 0(R_cl) ; (3)26

mtctr R_tmp27

bctrl ; call s28

subi R_sp, R_sp, 8 ; (4)29

lwz R_tmp, 0(R_sp)30

mtlr R_tmp ; restore RA31

lwz R_rp, 4(R_sp) ; restore rp32

blr ; (5)33

Again, this code exactly corresponds to the above five steps. At lines 5 to 16, frames between
the reset pointer (R rp) and the stack top (R sp) are copied to the heap. At line 18, the closure for
k is allocated in the heap and set properly in the following lines. Since the closure for k is already
placed in R 0 (the first argument position), the argument function s is called at line 28. Lines 29
to 33 are exactly the same as the lines 12 to 16 of the code for reset.

4.3 Captured Continuation k

When the captured continuation k is called with an argument, a reset mark is set in the stack to
delimit the context and the frames corresponding to k are copied back from the heap to the stack
top. The external function k (common to all the captured continuations) is implemented as follows
(Figure 5):

(1) Push the return address (RA) to the stack.

(2) Store rp to the stack and update rp.

Since k expects the return address and the reset pointer in the stack, we set them so that k is
composed with the current continuation. These two steps are exactly the same as the first two
steps of reset.

(3) Copy the frames for the captured continuation k to the stack top.

(4) Jump to the return address (code for the captured continuation, RAshift) preserved in the
closure for k.
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The PowerPC code for k is as follows:

min_caml_k:1

mflr R_tmp ; (1)2

stw R_tmp, 0(R_sp) ; store RA3

stw R_rp, 4(R_sp) ; (2) store rp4

addi R_rp, R_sp, 4 ; update rp5

addi R_sp, R_sp, 86

lwz R_1, 8(R_cl) ; bottom address7

lwz R_2, 12(R_cl) ; top address8

;; (3) copy the frames from the heap to the stack9

subi R_sp, R_sp, 410

subi R_1, R_1, 411

from_heap_loop:12

lwzu R_tmp, 4(R_1) ; from the heap13

cmpw cr7, R_2, R_114

beq cr7, from_heap_exit15

stwu R_tmp, 4(R_sp) ; to the stack16

b from_heap_loop17

from_heap_exit:18

addi R_sp, R_sp, 419

lwz R_tmp, 4(R_cl) ; (4)20

mtlr R_tmp21

blr ; jump to the preserved RA22

First, the link register is extracted and pushed on to the stack (lines 2 and 3) and the reset
pointer is stored and updated (lines 4 and 5). These four lines are exactly the same as the lines 3
to 6 of the code for reset. At lines 10 to 19, the frames for k are copied to the stack top. Finally,
the control is transferred to the preserved return address (lines 20 to 22).

4.4 Benchmarks

In this section, we measure the performance and memory consumption of our implementation of
shift/reset using several programs and compare them to the performance of running their CPS
counterparts. All timings were obtained on a PowerPC G4 system with 500MHz and 1.28 GB
SDRAM.

4.4.1 Reverse

The following function is one of the classic examples [5] of shift/reset that reverses a given list:

let rec visit lst = match lst with
| [] -> []
| a :: rest -> shift (fun k -> a :: k (visit rest)) in

let rec reverse lst = reset (fun () -> visit lst)
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Figure 6: Execution time and used memory of reverse.

Its CPS counterpart is given as follows:

let rec visit lst k = match lst with
| [] -> k []
| a :: rest -> visit rest (fun x -> a :: k x) in

let rec reverse lst = visit lst (fun x -> x)

The use of shift in this program is important because the same technique can be used to realize
one of the most well-known uses of shift/reset, namely, let-insertion in partial evaluation [1]. It
also serves as a good example to measure basic overhead of our implementation since the program
is simple.

Figure 6 shows the running time and the used memory when reversing a list of 100000 elements
10 times. (For “shift/reset (lazy)”, see Section 5.7.) Compared to the CPS version, our implemen-
tation is 24 % slower and consumes 129 % more memory. Since both the programs create closures
of a similar size, the difference appears to come from:

• the tail-call optimization of recursive calls are effective only for the CPS version,

• copying of stack frames, and

• creation of closures for k.

Because the tail-call optimization affects the performance considerably, the overhead of our im-
plementation does not seems to be large, considering that the amount of copied frames is not
small.

4.4.2 Prefix

The function prefix returns a list of prefixes of a given list. For example, prefix [1; 2; 3] ⇒
[[1]; [1; 2]; [1; 2; 3]]. We can write this function using shift/reset:

let rec visit lst = match lst with
| [] -> shift (fun k -> [])
| a :: rest ->

shift (fun k -> (k [a]) :: (reset (fun () -> k (a :: visit rest)))) in
let rec prefix lst = reset (fun () -> visit lst)
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Figure 7: Execution time and used memory of prefix.

Its CPS counterpart is given as follows:

let rec visit lst k = match lst with
| [] -> []
| a :: rest -> (k [a]) :: (visit rest (fun x -> k (a :: x))) in

let rec prefix lst = visit lst (fun x -> x)

In the resulting list, the first element is cons’ed many times since it appears in all prefixes. This
behavior is realized by capturing the continuation that cons’es the element and using it multiple
times.

The running time and the used memory for constructing prefix of 500 elements 10 times are
shown in Figure 7. Compared to reverse, we observe that the overhead of shift/reset is smaller.
One of the reasons is that the recursive call of the CPS version is no longer a tail call.4 Even though
the shift/reset version creates more closures and copies stack frames, they are negligible in the
presence of a large result list of prefixes.

4.4.3 Monads

Filinski showed that an arbitrary monad can be implemented using shift/reset [9]. Following
Gasbichler and Sperber [10], we use the following two functions to implement a list monad:

let rec reflect meaning =
shift (fun k -> extend k meaning)

let rec reify thunk =
reset (fun () -> eta (thunk ()))

where eta and extend are the unit and bind operations of a list monad:

let rec eta x = [x]
let rec extend f l = flatten (map f l)

Using them, we calculated the possible result for adding three numbers each of which has 6 or 7
possible values. The result of execution is found in Figure 8.

We observe that writing a program in direct style can be faster than its CPS counterpart. Notice
that to obtain the CPS version, we have to transform all the functions into CPS, which is tedious and

4The result of CPS transformation contains non-tail calls because shift/reset is used in the original program.
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Figure 9: Execution time and used memory of times.

error-prone. Furthermore, in the CPS program, having an additional argument for continuations
and creating closures for them becomes costly as the program becomes bigger. If shift/reset is
directly implemented and is used properly, we obtain the expressiveness of shift/reset without
loosing performance.

4.4.4 Times

We show the execution time and the used memory of times (described in Section 2) for multiplying
1000 elements whose last element is 0 repeated 5000 times in Figure 9. In contrast to prefix, the
difference of the CPS and shift/reset versions is not small. It is because in expression shift (fun
k -> 0), the large stack frames bound to k are copied despite the fact that they are not necessary
to evaluate 0 and can be discarded without copying. This suggests that the implementation could
be improved in such a case.

4.5 Issue

The implementation in this section copies the stack frames every time shift is called. However, we
need not copy the frames in some cases. The above times function is one of the examples. In this
case, we need not move the frames to the heap but only need to discard it. Moreover, consider the
execution of shift (fun k -> k 3). In the present implementation, we move the stack frames
from the stack to the heap at shift, but immediately copy the same frames back from the heap
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Figure 10: The behavior of the stack for 1 + reset (fun () -> 2 * shift (fun k -> 3 + k
4)). The reset frame contains the reset pointer and the return address.

to the stack. In this case, we can obtain the correct answer if we keep the frames in the stack and
reuse them. We will tackle these issues in the next section.

5 Lazy Implementation

In this section, we describe the lazy implementation which does not copy frames until needed. The
technique consists of two parts: keeping stack frames in the stack and reusing stack frames for tail
calls.

5.1 Keeping Stack Frames in the Stack

In the implementation in Section 4, we always move frames to the heap when shift is called. In
the lazy implementation, we do not do so but keep frames in the stack (if k does not escape) and
remember that the frames correspond to k. When k is called later, the stack frames (residing in
the stack) are copied to the stack top. For example, consider the execution of 1 + reset (fun ()
-> 2 * shift (fun k -> 3 + k 4)). The behavior of the stack is depicted in Figure 10. When
shift is executed, the stack frame for 2 * [] is not moved to the heap but kept in the stack.
When k is called later, the corresponding frame is copied to the stack top. In this case, we can
execute the expression by copying the frame only once. In contrast, we had to copy the frame twice
in the implementation of Section 4. Notice that when the execution of the body of shift finishes,
we need to discard the remaining stack frames captured for k.

We cannot keep frames in the stack every time, however. For example, consider the expression
shift (fun k -> k). This expression captures the current continuation and returns it. In other
words, k escapes from the lexical scope of shift. In this case, we have to copy k’s stack frames to
the heap, because otherwise, the stack frames will be destroyed in the subsequent execution.

5.2 Reusing Stack Frames for Tail Calls

We can further reduce the number of copies, if the captured continuation k is always called at the
tail position. Consider the execution of 1 + reset (fun () -> 2 * shift (fun k -> k 3)).
The behavior of the stack is depicted in Figure 11. In this case, the frame corresponding to k
already exists in the stack top (the second figure of Figure 11). By reusing this frame, we can omit
the copy of the frame entirely. In the implementation of Section 4, we had to copy the frame twice
to execute the same expression.

Readers might think that k is typically not called at the tail position, because in that case, the
program could have been written without using shift. One does not write shift (fun k -> k

14
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Figure 11: The behavior of the stack for 1 + reset (fun () -> 2 * shift (fun k -> k 3))

3) because he could simply write 3 instead of using shift. However, it is known that such shift
expressions are produced if we apply partial evaluation to programs written with shift/reset [1].
Therefore, it is important that such expressions are executed without much penalty.

Besides, there exists a case where k is used multiple times. If there exist both the tail call of
k and non-tail calls of k (e.g., shift (fun k -> k (1 + k 3))), we only need to copy frames in
the non-tail cases. For the tail case, no copy is required.

5.3 Overview

In the lazy implementation, we use a shift mark in addition to the reset mark. Intuitively, the shift
mark is used to separate the active stack frames from the captured frames.

The overview of the lazy implementation is as follows:

• When calling reset, set a reset mark and a shift mark.

• When calling shift (fun k -> M), we classify the treatment in 3 ways according to how
k is used in M (see below).

• When calling a continuation k, set a reset mark and a shift mark and copy the corresponding
frames from the heap or the stack to the stack top.

Like a reset mark, we use a dedicated register R shp as a shift pointer (shp). In the following
subsections, we describe the lazy implementation in detail.

5.4 Reset

The same as before. We only need to save and restore shp:

(1) Push the return address (RA) to the stack.

(2) Store rp and shp to the stack and update both of them.

(3) Call the argument function r of reset.

(4) Restore the return address, rp, and shp from the stack after returning from the function call.

(5) Jump to the restored return address.

As in Section 4, these steps exactly correspond to the PowerPC code:
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.globl min_caml_reset1

min_caml_reset:2

mflr R_tmp ; (1)3

stw R_tmp, 0(R_sp) ; store RA4

stw R_rp, 4(R_sp) ; (2) store rp5

addi R_rp, R_sp, 4 ; update rp6

stw R_shp, 8(R_sp) ; store shp7

addi R_shp, R_sp, 8 ; update shp8

addi R_sp, R_sp, 169

mr R_cl, R_0 ; (3)10

lwz R_tmp, 0(R_cl)11

mtctr R_tmp12

bctrl ; call r13

subi R_sp, R_sp, 16 ; (4)14

lwz R_tmp, 0(R_sp)15

mtlr R_tmp ; restore RA16

lwz R_rp, 4(R_sp) ; restore rp17

lwz R_shp, 8(R_sp) ; restore shp18

blr ; (5)19

5.5 Shift

The continuation is delimited not only when reset is executed, but also when shift is executed—
the body of shift is executed with an empty continuation. In the implementation of Section 4, we
moved the stack frames up to rp when calling shift. Then, the state of the stack became the same
as when the enclosing reset was executed. In the lazy implementation, however, we keep frames
in the stack. To avoid capturing the unnecessary frames, we use shp: it always points to the top
of the captured frames, showing the start of the active frames. When shift is executed, the stack
frames up to shp are captured.

When the execution of the body of shift finishes, we must discard the remaining captured
frames. (We did not have to do this in the implementation of Section 4, because there were no
remaining captured frames and the return address and the reset pointer were at the top of the
stack.) To discard the remaining captured frames, we use rp: we discard frames up to rp and jump
to the saved return address.

The above description does not take advantage of the tail call of k. To reuse stack frames for
tail calls, we do two things. First, we do not update shp when shift is called. By not updating
shp, the stack frames corresponding to k are included in the active frames. When another shift
is executed later, the reused frames will be correctly captured. Second, the application of k at the
tail position is detected syntactically and is turned into the blr (return) instruction, so that the
result is passed to the reused frames.

For example, consider the execution of 1 + reset (fun () -> 2 * shift (fun k -> k (k
3))). The behavior of the stack is depicted in Figure 12. Since k does not escape and the argument
function of shift calls k in the tail position, the frame for k is preserved in the stack without
updating the shift mark (the second figure of Figure 12) and reused for the tail call of k. To call the
inner non-tail k, we copy the frame from the stack to the stack top (the third figure). To call the
outer k, we do not copy the frame but pass the result value (6) to the remaining captured frame
for k (the fourth figure).
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Figure 13: The behavior of the stack for 1 + reset (fun () -> 2 * shift (fun k -> k (shift
(fun h -> k 3 + h 4)))).

The above method to reuse stack frames of tail calls works fine even when shift is used multiple
times. For example, consider the execution of 1 + reset (fun () -> 2 * shift (fun k -> k
(shift (fun h -> k 3 + h 4)))). The behavior of the stack is depicted in Figure 13. Neither
k nor h escapes. Since the first shift calls k in the tail position, the shift mark is not updated in
this case (the first figure of Figure 13). Thus, the second shift correctly captures the right frame
(i.e., 2 * []). Since h is not used in the tail position, the shift mark is updated at this point (the
second figure). When k 3 is executed, the frame for k is copied to the stack top (the third figure),
and when h 4 is executed, the frame for h is copied to the stack top (the fourth figure). Finally,
when the execution of the body of the second shift is finished (the fifth figure), the frame for h is
discarded and we get the correct answer 15. In this case, we cannot reuse the frame for k, because
it is recaptured by second shift.

To implement shift, we distinguish three cases. We write the closure pointing to continuation
frames in the stack klazy.

• k does not escape and there may not exist the tail call of k (Figure 14).

In this case, we can keep the frames in the stack. When k is called, they are copied to the
stack top. Since k does not appear in the tail position, we need to update shp and discard
the remaining captured frames when the execution of shift ends.

(1) Make the closure for the continuation function klazy with the information on the frames
and the return address of shift. We do not copy or move the frames to the heap.

(2) Store shp to the stack and update shp. We do not save the return address or rp.

(3) Set klazy as the first argument and call the argument function s of shift.
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Figure 14: The behavior of the stack and the heap for shift: k does not escape; k may not be
called at the tail position.

(4) Discard the frames up to rp but excluding rp and shp. after returning from the function
call.

(5) Restore the return address and rp, shp from the stack.
(6) Jump to the restored return address.

.globl min_caml_break_not_escape_shift1

min_caml_break_not_escape_shift:2

mr R_cl, R_03

mr R_0, R_hp ; (1) closure k4

addi R_hp, R_hp, 165

lis R_1, ha16(min_caml_k_lazy)6

addi R_1, R_1, lo16(min_caml_k_lazy)7

mflr R_tmp8

stw R_1, 0(R_0) ; code pointer to k9

stw R_tmp, 4(R_0) ; RA to shift10

stw R_shp, 8(R_0) ; bottom address11

stw R_shp, 0(R_sp) ; (2) store shp12

mr R_shp, R_sp ; update shp13

stw R_shp, 12(R_0) ; top address14

addi R_sp, R_sp, 815

lwz R_tmp, 0(R_cl) ; (3)16

mtctr R_tmp17

bctrl ; call s18

subi R_sp, R_rp, 4 ; (4)19

lwz R_tmp, 0(R_sp)20

mtlr R_tmp ; restore RA21

lwz R_rp, 4(R_sp) ; restore rp22

lwz R_shp, 8(R_sp) ; restore shp23

blr ; (5)24

• k does not escape and there always exists the tail call of k (Figure 15).

In this case, we can still keep the frames in the stack. We do not update shp and reuse the
frames of k for the tail call. If k is applied at the non-tail position in s (e.g. the inner k of
shift (fun k -> k (k 3))), we copy the frames from the stack to the stack top.
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(1) Make the closure for the continuation function klazy with the information on the frames
and the return address of shift. We do not copy or move the frames to the heap.

(2) Set klazy as the first argument and jump to the argument function s of shift.

We do not renew the return address but jump directly so that the tail-ness of k is preserved.

.globl min_caml_tail_not_escape_shift1

min_caml_tail_not_escape_shift:2

mr R_cl, R_03

mr R_0, R_hp ; (1) closure k4

addi R_hp, R_hp, 165

lis R_1, ha16(min_caml_k_lazy)6

addi R_1, R_1, lo16(min_caml_k_lazy)7

mflr R_tmp8

stw R_1, 0(R_0) ; code pointer to k9

stw R_tmp, 4(R_0) ; RA to shift10

stw R_shp, 8(R_0) ; bottom address11

stw R_sp, 12(R_0) ; top address12

lwz R_tmp, 0(R_cl) ; (2)13

mtctr R_tmp14

bctr ; jump to s15

• k may escape (Figure 16).

In this case, we do not keep continuation frames in the stack but copy them to the heap. The
following steps are the same as the ones in Section 4.2 except for the use of shp instead of rp
and discarding of remaining captured frames.

(1) Move the stack frame up to shp (excluding shp) to the heap.

(2) Make the closure of the continuation function k with the information on the frames and
the return address of shift.

(3) Set k as the first argument and call the argument function s of shift.

(4) Discard the frames up to rp but excluding rp and shp after returning from the function
call.

19



..

.

..

.

rp

shp

..

.

..

.

rp

shp

.

..

-

¡¢
RAshift

¾
¤£ ¡¢

¡¢k
move

.

.

.

.

.

.
..
.

..

.

rp

shp
...

rp

RA

shp

shp
¡
¢
discard¦¢frames to

be used
in s

⇒
(1), (2)

⇒
(3)

⇒
(4)

⇒
(5), (6)

stack stack heap stack stack stack

Figure 16: The behavior of the stack and the heap for shift: k may escape.

(5) Restore the return address, rp, and shp from the stack.

(6) Jump to the restored return address.

.globl min_caml_escape_shift1

min_caml_escape_shift:2

mr R_cl, R_03

;; (1) move the frames from the stack to the heap4

addi R_0, R_shp, 4 ; current shp5

subi R_2, R_hp, 46

subi R_hp, R_hp, 47

to_heap_loop:8

lwzu R_tmp, 4(R_0) ; from the stack9

cmpw cr7, R_0, R_sp10

beq cr7, to_heap_exit11

stwu R_tmp, 4(R_hp) ; to the heap12

b to_heap_loop13

to_heap_exit:14

addi R_hp, R_hp, 415

addi R_sp, R_shp, 816

mr R_0, R_hp ; (2) closure k17

addi R_hp, R_hp, 1618

lis R_1, ha16(min_caml_k)19

addi R_1, R_1, lo16(min_caml_k)20

mflr R_tmp21

stw R_1, 0(R_0) ; code pointer to k22

stw R_tmp, 4(R_0) ; RA to shift23

stw R_2, 8(R_0) ; bottom address24

stw R_0, 12(R_0) ; top address25

lwz R_tmp, 0(R_cl) ; (3)26

mtctr R_tmp27

bctrl ; call s28

subi R_sp, R_rp, 4 ; (4)29

lwz R_tmp, 0(R_sp) ; (5)30

mtlr R_tmp ; restore RA31

lwz R_rp, 4(R_sp) ; restore rp32
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lwz R_shp, 8(R_sp) ; restore shp33

blr ; (6)34

To decide whether k may escape or not, we employ a simple and standard type-based escape
analysis, extended to cope with shift/reset. A continuation is regarded as escaping according to
the following rules:

• Return values of functions may escape.

• If a function may escape, their free variables may also escape.

• If a tuple or a list may escape, their elements may escape.

• Values assigned in arrays may escape.

The check of whether there always exists the tail call of k is done syntactically. For if ex-
pressions, we judge that there always exists the tail call of k if the tail call of k exists in both
branches.

5.6 Captured Continuation k

The behavior when the captured continuation k or klazy is called is the same as before except that
a shift mark is set. When k is called, the following steps are executed:

(1) Push the return address (RA) to the stack.

(2) Store rp and shp to the stack and update both of them.

(3) Copy the frames for the captured continuation k from the heap to the stack top.

(4) Jump to the return address preserved in the closure of k.

Similarly for klazy:

(1) Push the return address (RA) to the stack.

(2) Store rp and shp to the stack and update both of them.

(3) Copy the frames for the captured continuation klazy from the stack to the stack top.

(4) Jump to the return address preserved in the closure of klazy.

The difference between k and klazy is whether copying the frame is from the heap or from the
stack. In fact, the codes of k and klazy are exactly the same.

Finally, the tail call of non-escaping k is converted to do nothing and jump to the return address
(the blr instruction) because necessary frames already exist in the top of the stack.
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min_caml_k:1

min_caml_k_lazy:2

mflr R_tmp ; (1)3

stw R_tmp, 0(R_sp) ; store RA4

stw R_rp, 4(R_sp) ; (2) store rp5

addi R_rp, R_sp, 4 ; update rp6

stw R_shp, 8(R_sp) ; store shp7

addi R_shp, R_sp, 8 ; update shp8

addi R_sp, R_sp, 169

lwz R_1, 8(R_cl) ; bottom address10

lwz R_2, 12(R_cl) ; top address11

;; (3) copy the frames to the stack top12

subi R_sp, R_sp, 413

addi R_1, R_1, 414

from_heap_loop:15

lwzu R_tmp, 4(R_1) ; from the heap or the stack16

cmpw cr7, R_2, R_117

beq cr7, from_heap_exit18

stwu R_tmp, 4(R_sp) ; to the stack top19

b from_heap_loop20

from_heap_exit:21

addi R_sp, R_sp, 422

lwz R_tmp, 4(R_cl) ; (4)23

mtlr R_tmp24

blr ; jump to the preserved RA25

5.7 Benchmarks

In this chapter, we discuss the efficiency of the lazy implementation with some benchmark programs.
The same as in Section 4, all timings are obtained on a PowerPC G4 system with 500MHz and
1.28 GB SDRAM.

5.7.1 Reverse, Prefix, Monads

Timings and used memory for reverse, prefix, and monads are already shown in Figures 6, 7,
and 8, respectively. In all the examples, the amount of used memory decreases thanks to keeping
continuation frames in the stack. However, since none of them call k at the tail position, stack
frames are not reused. Even though the number of copies is reduced, the running time somewhat
increases due to the overhead of the lazy implementation.

5.7.2 Times

The lazy implementation is the most effective for the times example (Figure 9). In the lazy
implementation, unused continuation frames are not copied but simply discarded. It outperforms
all the other cases, even the native OCaml implementation that uses exception. We cannot directly
compare our implementation with the OCaml system, because OCaml supports many more features
than MinCaml. However, this result shows that the lazy implementation can be effective in some
cases.
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Figure 17: Execution time and used memory of queen.

5.7.3 N-Queen

As an example that uses shift more extensively, we show the function queen that solves the N-
Queen problem. Instead of using a double loop to search for a solution, we write the program in
non-deterministic style. The following function choice captures the current continuation k and
passes the value j to k. Moreover, it also passes the result of the recursive call to k:

let rec choice j = if j = 1 then 1
else shift (fun k -> k j; k (choice (j - 1)))

Therefore, we can consider choice as the function that returns the value from 1 to j non-
deterministically. In the function choice, there is the tail call of k and k does not escape in
the argument function of shift.

Using this function, the N-Queen problem can be solved by a single loop without backtracking:

let rec queen n =
let rec loop i solution =
if i = 0 then print solution solution
else let j = choice n in

let solution2 = j :: solution in
if is safe solution2
then loop (i - 1) solution2 in

reset (fun () -> loop n [])

In the program, print solution prints the answer list, and is safe checks whether a queen is
safe to place.

We show in Figure 17 the execution time and the consumed memory to solve the 11-Queen
problem with this program using the implementation of Section 4 and the lazy implementation. In
the implementation of Section 4, we have to copy frames three times for every shift. In the lazy
implementation, on the other hand, we have to copy frames only once for every shift, because
one of the calls of k is a tail call and does not need copying. This difference of the number of
copying affects the performance of the two implementations. Moreover, since the tail frames are
concatenated to the active frames, copied frames tend to become larger in the lazy implementation,
which could have a positive effect on performance. In the implementation of Section 4, the same
frames are copied separately, incurring overhead for each copy.
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6 Related Work

Gasbichler and Sperber showed the direct implementation of shift, reset, and control and
implemented it in the Scheme 48 system [10]. They showed that the direct implementation of
shift/reset is significantly faster than the indirect implementation using call/cc. Their imple-
mentation is done in the low-level Scheme called PreScheme, a virtual machine for the Scheme
48 system. Kiselyov implemented the delimcc library5 that includes native implementation of
shift/reset at the OCaml bytecode level. His implementation copies only the necessary prefix
of the stack and is fully integrated with OCaml exceptions. The present work shares the goal of
obtaining fast implementation of shift/reset with them. Rather than in a virtual machine or the
OCaml bytecode, we achieved the same effect in the PowerPC assembly language, making explicit
all the details including how to store the return address and how to represent the reset mark.
Gasbichler and Sperber’s implementation employs the incremental stack/heap strategy, while we
employ the simpler stack strategy.

Clinger et al. presented a comprehensive list of strategies for first-class continuations and defined
“zero overhead” criteria for implementation strategies of first-class continuations [4]. An implemen-
tation strategy is called to have zero overhead if the support for the first-class continuation does
not incur any overhead on programs that do not use them. Strictly speaking, our implementation
strategy does not have the zero overhead property according to this criteria, because we reserve two
registers for a reset pointer and a shift pointer. The investigation on the effect of this design choice
is a future work. If instead we store the reset and shift pointers in memory (with performance
penalty for shift and reset), our strategy obtains the zero overhead property: programs that do
not use shift/reset are compiled exactly the same as the original MinCaml compiler.

Ugawa et al. proposed lazy stack copying to implement first class continuations in the stack-
based implementation [16]. In their lazy stack copying, frames are not copied when calling call/cc,
but deferred until needed. We employed the same idea to implement shift/reset in a typed setting
rather than call/cc in an untyped setting.

7 Conclusion and Future Work

This paper presented a direct implementation as well as the lazy implementation of delimited con-
trol operators shift and reset in the MinCaml compiler. By showing the implementation in
the PowerPC assembly language, we spelled out all the details of how composable continuations
are implemented using the stack strategy. We presented various benchmarks and discussed their
performance. Because of the simplicity of the implementation, it can serve as a reference implemen-
tation of shift/reset. We hope that our implementation promotes the use of shift and reset
in programming.

As future work, we plan to compare various implementation strategies of shift/reset, to
investigate the interaction with garbage collection, and to relate this implementation with the
definitional interpreter for shift/reset to formally verify the correctness of the implementation.
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A The PowerPC Assembly Language

In this section, we briefly describe PowerPC assembly language required to understand code for
reset, shift, and the captured continuation k.

The mr (Move Register) instruction moves the content of a general register to the other general
register.

mr r1, r2 ; r1 <- r2

The addi (Add Immediate) instruction adds the value of the second operand and the third
operand, and saves the result in the first operand. So,

addi r1, r1, 4 ; r1 <- r1 + 4

increments register r1 by 4. The subi (Subtract Immediate) instruction subtracts the immediate
value from the value of a register.

The lis (Load Immediate Shifted) instruction loads the 16-bit immediate value of the second
operand shifted left 16-bit into the first operand. We use this instruction when we want to get a
code pointer to a function, For example,

lis r1, ha16(f) ; high 16bits << 16
addi r1, r1, lo16(f) ; low 16bits

loads the code pointer of f to the register r1.
The lwz (Load Word and Zero) instruction loads a word from memory into a general register.

The stw (Store Word) instruction stores the content of a general register into memory. The first
operand of lwz and stw instructions is a general register to be loaded or stored. The effective
address being loaded or stored is calculated as sum of the immediate value of the second operand
and the content of the third operand. So,

lwz r1, 4(r2) ; r1 <- mem(4 + r2)
stw r1, 4(r3) ; r1 -> mem(4 + r3)

loads a word of memory from the address 4 + r2 and stores that word into memory of the address
4 + r3. Add the action of updating the general The lwzu (Load Word and Zero with Update)
instruction is same as lwz, but updates the content of the third operand to the effective address.
The same for the stwu (Store Word with Update) instruction. So,
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lwzu r1, 4(r2) ; r1 <- mem(4 + r2)
; r2 <- 4 + r2

stwu r1, 4(r3) ; r1 -> mem(4 + r3)
; r3 <- 4 + r3

is same as an above example, but registers r2 and r3 are both incremented by 4.
The mflr (Move from Link Register) instruction moves the content of the link register to a

general register. The mtlr (Move to Link Register) instruction moves the content of a general
register to the link register. So,

mflr r1 ; r1 <- LR
mtlr r2 ; LR <- r2

moves the content of the link register to the register r1 and modifies the content of the link register
to the register r2. These instructions are used to save and restore the return address. The blr
(Branch Link Register) instruction jumps to the address indicated by the link register.

The mtctr (Move to Count Register) instruction moves the content of a general register to
the count register; the bctrl (Branch Count Register then Link) instruction jumps to the address
indicated by the count register and sets the next address of this instruction to the link register.
These two instructions are used to realize “computed goto”.

The b (Branch) instruction jumps to the label unconditionally without changing the content of
the link register.

The cmpw (Compare Word) instruction compares the content of two general registers and sets
the result to a condition register. The beq (Branch Equal) instruction uses this condition register:
If two values are equal, jumps to the label of the second operand. So,

cmpw cr7, r1, r2 ; r1 = r2 ?
beq cr7, l1

judges whether the register r1 equals to the register r2 and if so, jumps to the label l1.
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