
Derivation of an Abstract Machine for

λ-calculus with Delimited Continuation Constructs

Arisa Kitani Kenich Asai

Ochanomizu University
2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

Abstract

The goal of our research is to give a verified virtual machine for the λ-calculus with delimited
continuation constructs, shift and reset, and ultimately to give a formal foundation for the direct
implementation of shift/reset in the machine language. Toward this goal, we derive an abstract
machine and transition rules from the CPS interpreter defining shift/reset, using a series of
transformations whose validity is proved. Following the “functional correspondence” approach
advocated by Danvy, we first perform the CPS transformation and defunctionalization. Unlike
the previous approach, however, we introduce two new transformations, stack introduction and
environment storing, to turn the interpreter closer to the actual implementation. After stack
introduction, the abstract machine stores the result of execution in a stack rather than holding
it in machine instructions. After environment storing, the bindings of necessary variables after
function calls are stored explicitly in a stack, mimicking the standard calling convention of the
compiled programs. In this article, we show correctness proofs of the two transformations using
the bisimulation method. Consequently, we succeeded in deriving an abstract machine that
stores bindings in the stack from the original CPS interpreter using validated transformations
only.

keywords delimited continuations, shift/reset, abstract machine, interpreter, program transfor-
mation, bisimulation

1 Introduction

A continuation represents the rest of an evaluation at a certain point. To capture or to copy a
continuation corresponds to editing the control flow of a program. Unlike the global jump, however,
control operators can be typed [3, 5] and are safer to use than unrestricted ‘goto’. An example use
of continuations is for exception handling. Using continuation-capturing operators, we can achieve
the same process by discarding the current continuation.

To manipulate continuations in a program, several control operators have been proposed, such
as call/cc [16], control/prompt [8], and shift/reset [5]. While call/cc captures whole the rest of the
continuation, control/prompt and shift/reset capture the continuation whose scope is delimited by
the user.

The implementation of control operators, however, is not easy. The direct implementation
typically involves copying part of the stack to the heap and back. Such low-level operations are
hard to implement and are error-prone.

1

To remedy this problem, we use the “functional correspondence” approach in this article. Start-
ing from the definitional CPS interpreter for shit/reset, we obtain the low-level implementation by
successively applying transformations whose validity is formally verified. This gives us an abstract
machine that is formally verified to behave the same as the definitional CPS interpreter [2].

In this article, we focus on the delimited continuation constructs, shift and reset, and show that
we can obtain an abstract machine for λ-calculus with shift and reset. Along the development, we
introduce two new transformations, stack introduction and environment storing, and prove their
correctness. These two transformations are important in obtaining an abstract machine that is
closer to the actual implementation. After stack introduction, the abstract machine stores the
result of execution in a stack rather than holding it in machine instructions. After environment
storing, the bindings of necessary variables after function calls are stored explicitly in a stack,
mimicking the standard calling convention of the compiled programs. As a whole, we can obtain an
abstract machine that stores bindings in the stack from the original CPS interpreter using validated
transformations only.

The contributions of the paper are as follows:

• We introduce two transformations, stack introduction and environment storing, and prove
their correctness.

• We connect using the “functional correspondence” approach the definitional CPS interpreter
for λ-calculus with shift/reset and an abstract machine which saves bindings of variables in
the stack.

• We present a formally verified abstract machine that properly models two low-level features:
the calling convention of compiled programs and copying of the stack.

Related work

Danvy and his colleagues strongly push forward the “functional correspondence” approach to relate
various interpreters and abstract/virtual machines. Ager, Biernacki, Danvy, and Midtgaard [2] show
that the λ-calculus can be related to various abstract machines, such as the CEK, CLS, and SECD
machines, via the CPS transformation and defunctionalization. Based on this idea, Danvy and
Millikin [7] applied it to a calculus with Landin’s J operator and relate it to the SECD machine.
Along the development, they mention bisimulation between the defunctionalized CPS interpreter
and the SECD machine. Following this approach, we applied the same technique to the λ-calculus
with shift and reset, but proved formally the correctness of stack introduction and introduced a
new transformation that stores an environment in the stack.

Biernacka, Biernacki, and Danvy [4] already applied the “functional derivation” approach to
the λ-calculus with shift/reset. They applied the CPS transformation and defunctionalization to
obtain an abstract machine similar to the SECD machine. This corresponds to the first two steps
of our derivation. In the present work, we further transformed the interpreter to obtain an abstract
machine that is closer to the actual implementation in the machine language.

Ager, Biernacki, Danvy, and Midtgaard [1] presented how to obtain a compiler and a virtual
machine by dividing an abstract machine. Following this approach, Igarashi and Iwaki [9] derived
a compiler and a virtual machine for the multi-level language λ©, which supports backquote and
unquote. Although we do not derive a compiler in this article, we hope to apply this idea to validate

2

the direct low-level implementation of shift/reset, which our research group is currently working
on [12].

Overview

We first introduce the operators shift and reset (Section 2). They are implemented straightfor-
wardly in the CPS interpreter based on their original definition (Section 3). Then, we transform
this interpreter to obtain the lower-level implementation of shift/reset. CPS transformation (Sec-
tion 4), defunctionalization (Section 5), continuation linearization (Section 6), stack introduction
(Section 7), and environment storing (Section 8) are applied to the interpreter. The validity of stack
introduction and environment storing is proved in Sections 7.2 and 8.2. Afterwords, we describe
the feature of the obtained abstract machine (Section 9). We finally mention the conclusion and
issues (Section 10).

2 Shift/reset

The shift operator abstracts the current continuation as a function. It is related to call/cc found
in Scheme [16], but is different in that the reset operator delimits the scope of the abstracted
continuation and the continuation is destroyed if it is not called later. In this article, the expression
shift(...) means that the current continuation is abstracted as a function and passed to the
function (...). For example, the expression 1 + shift(fun k -> 2 * (k 3)) means that a
continuation, which is a function that receives a value and adds 1 to it, is passed to k. Thus, we
obtain 2 * (1 + 3), or 8 as a result.

The reset operator delimits the scope of continuations abstracted by the shift operator. In this
article, reset(...) means that continuations captured by the shift operator in (...) is limited
up to this expression. For example, the expression 1 + reset(4 + shift(fun k -> 2 * (k 3)))
means that a continuation, which is a function that receives a value and adds 4 to it, is passed to k.
We obtain 1 + (2 * (4 + 3)), or 15 as a result. The first part of the expression, 1 +, is outside
the range of continuations abstracted by the shift.

3 CPS interpreter

The language we consider in this article is the λ-calculus extended with shift and reset. Besides
variables, abstraction, and application, we can express shift and reset.

t ::= x | λx. t | t0 t1 | shift(t) | reset(t)

Values are either a closure [x, t, e], which is generated by abstraction, or a continuation [c], which
is captured by the shift operator.

v ::= [x, t, e] | [c]

Now, we implement this language with a functional programming language, OCaml. Definitions of
terms and values are as follows:

1 (* term *)

2 type t = Var of string (* variable *)

3 | Fun of string * t (* abstraction *)

3

1 (* id : v -> v *)

2 let id x = x
3

4 (* eval : t * e * c -> v *)

5 let rec eval (t, e, c) = match t with
6 Var(x) -> c (get(x, e))
7 | Fun(x, t) -> c (VFun(x, t, e))
8 | App(t0, t1) -> eval (t1, e, (fun v1
9 -> eval (t0, e, (fun v0

10 -> (match v0 with
11 VFun(x’, t’, e’) -> eval(t’, (x’, v1) :: e’, c)
12 | VCont(c’) -> c (c’ v1))))))
13 | Shift(t) -> eval (t, e, (fun v
14 -> (match v with
15 VFun(x’, t’, e’)
16 -> eval (t’, (x’, VCont(c)) :: e’, id)
17 | VCont(c’) -> c’ (VCont(c)))))
18 | Reset(t) -> c (eval (t, e, id))
19

20 (* eval1 : t -> v *)

21 let eval1 t = eval (t, [], id)

Figure 1: eval1: the initial CPS interpreter defining shift and reset

4 | App of t * t (* application *)

5 | Shift of t (* shift *)

6 | Reset of t (* reset *)

7 (* value *)

8 type v = VFun of string * t * e (* closure *)

9 | VCont of c (* continuation *)

10 (* environment *)

11 and e = (string * v) list
12 (* continuation *)

13 and c = (v -> v)

Environments are implemented as lists of pairs of a variable x and a value v. The function get(x,
e) returns the value of a variable x in an environment e. The evaluator eval1 that defines shift/reset
is implemented as in Figure 1 [6].

This is the standard CPS interpreter for the λ-calculus extended with shift and reset. To
execute Shift(t), the evaluator packages the current continuation as VCont(c) and passes it to
the argument t (to be more precise, the closure resulting from executing t using eval). To execute
Reset(t), the evaluator initializes or resets the current continuation to id, delimiting the scope
of continuations abstracted by the shift operator. This is the straightforward implementation of
shift/reset based on their original definition. Below, we apply a series of transformations whose
validity is verified to this interpreter to obtain the lower-level implementation of shift/reset.

4

1 (* cid : v * d -> v *)

2 (* did : v -> v *)

3 let cid (v, d) = d v
4 let did x = x
5

6 (* eval : t * e * c * d -> v *)

7 let rec eval (t, e, c, d) = match t with
8 Var(x) -> c (get(x, e), d)
9 | Fun(x, t) -> c (VFun(x, t, e), d)

10 | App(t0, t1)
11 -> eval (t1, e, (fun (v1, d1)
12 -> eval (t0, e, (fun (v0, d0)
13 -> (match v0 with
14 VFun(x’, t’, e’) -> eval(t’, (x’, v1) :: e’, c, d0)
15 | VCont(c’) -> c’ (v1, (fun v’ -> c (v’, d0))))), d1)), d)
16 | Shift(t)
17 -> eval (t, e, (fun (v, d’)
18 -> (match v with
19 VFun(x’, t’, e’) -> eval (t’, (x’, VCont(c)) :: e’, cid , d’)
20 | VCont(c’) -> c’ (VCont(c), d’))), d)
21 | Reset(t) -> eval (t, e, cid , (fun v -> c (v, d)))
22

23 (* eval2 : t -> v *)

24 let eval2 t = eval (t, [], cid , did)

Figure 2: eval2: CPS transformation of eval1

4 CPS transformation

If every recursive call in the evaluator is a tail call, we can consider its arguments as a state and
the evaluator as defining the transition rules between states. The evaluator eval1, however, has
recursive calls which are not tail calls (lines 12 and 17 of eval1). Thus, we CPS-transform [14]
eval1 to make it tail recursive. This transformation changes the definition of types as follows:

1 type v = (* no change *) (* value *)

2 and e = (* no change *) (* environment *)

3 and c = (v * d -> v) (* continuation *)

4 and d = (v -> v) (* metacontinuation *)

The resulting evaluator is shown in Figure 2. We call this evaluator eval2.
While the evaluator eval1 is mostly in CPS form having the continuation c, eval2 is CPS-

transformed one more time and has two continuations c and d. As a result of the double CPS
transformations, a continuation is divided into two parts.

Validity of this transformation is derived directly from the validity of CPS transformation.

Proposition 1 (Validity of CPS transformation). 　
For an arbitrary term t, eval1 and eval2 both fail to yield values or both yield values which are
structurally equal. (The value which is given by CPS-transforming the result of evaluation in eval1
is equal to the result of evaluation in eval2.)

5

1 (* run_c : c * v * d -> v *)

2 let rec run_c (c, v, d) = match c with
3 CApp1(t’, e’, c’) -> eval(t’, e’, CApp0(v, c’), d)
4 | CApp0(v’, c’) -> (match v with
5 VFun(x’, t’, e’)
6 -> eval(t’, (x’, v’) :: e’, c’, d)
7 | VCont(c’’) -> run_c (c’’, v’, DRun(c’, d)))
8 | CShift(c’) -> (match v with
9 VFun(x’, t’, e’)

10 -> eval(t’, (x’, VCont(c’)) :: e’, CReset , d)
11 | VCont(c’’) -> run_c (c’’, VCont(c’), d))
12 | CReset -> run_d (d, v)
13 (* run_d : d * v -> v *)

14 and run_d (d, v) = match d with
15 DRun(c’, d’) -> run_c (c’, v, d’)
16 | DReset -> v

Figure 3: run c and run d: the apply functions of eval3

1 (* cid : c *)

2 (* did : d *)

3 let cid = CReset
4 let did = DReset
5

6 (* eval : t * e * c * d -> v *)

7 let rec eval (t, e, c, d) = match t with
8 Var(x) -> run_c (c, get(x, e), d)
9 | Fun(x, t) -> run_c (c, VFun(x, t, e), d)

10 | App(t0, t1) -> eval (t1, e, CApp1(t0, e, c), d)
11 | Shift(t) -> eval (t, e, CShift(c), d)
12 | Reset(t) -> eval (t, e, cid , DRun(c, d))
13

14 (* eval3 : t -> v *)

15 let eval3 t = eval (t, [], cid , did)

Figure 4: eval3: defunctionalization of eval2

5 Defunctionalization

As a result of two CPS transformations, eval2 uses many higher-order functions. However, in the
lower level implementation, which is our destination, such a high-level feature is not supported. We
therefore defunctionalize [15] eval2 to remove higher-order functions. We call the new evaluator
eval3.

For every higher-order function (a fun statement in OCaml) in eval2, defunctionalization (1)
creates an object which holds necessary data to run the function, and (2) replaces the higher-order
function with the created data. Then, we supply apply functions that perform the same operations

6

as the original higher-order function. In this article, we denote them run *. For example, when a
term Shift(t) is passed to eval2, the evaluator yields a fun statement of OCaml (lines 17 to 20 of
eval2). In the body of this fun statement, c is a free variable. The variable c is needed to execute
the function later. In eval2, the evaluator refers to the scope right out of the fun statement for
the binding of c. On the other hand, the defunctionalized evaluator has to hold the information
when it yields the corresponding object. Thus, the object corresponding to the fun statement in
executing the term Shift(t) is defined to hold c as an argument. For other fun statements, free
variables in the body are similarly held in the objects. Here is the changed definition of types:

1 type v = (* no change *) (* value *)

2 and e = (* no change *) (* environment *)

3 (* continuation *)

4 and c = CApp1 of t * e * c
5 (* the outer fun statement of App *)

6 (* lines 11-15 in Fig. 2 *)

7 | CApp0 of v * c (* lines 12-15 *)

8 | CShift of c (* lines 17-20 *)

9 | CReset (* cid , lines 19, 21, 24 *)

10 and d = DRun of c * d (* line 17 *)

11 | DReset (* did , line 24 *)

Next, we equip the evaluator with apply functions (Figure 3). Operations executed in the body
of fun statements in eval2 are executed in these apply functions.

Not only replacing each fun statement with the corresponding object, but we call the apply
functions when the continuation is applied in eval2. For example, when the term Var(x) is passed
to the evaluator, the evaluator obtains the value of x from the environment and passes it to the
continuation c (line 8 of eval2). Since c becomes a continuation object (rather than an applicable
function) after defunctionalization, we call the apply function (run c) to execute the continuation
as in run c (c, get(x, e), d). We similarly change the evaluator for other terms and for d, and
obtain eval3 (Figure 4). 1

By this transformation, continuations represented as fun statements are divided into contin-
uation objects which hold data needed to execute the continuations and the apply functions for
continuation objects. Since continuation objects indicate steps of evaluation, we can consider them
like a list of code.

Validity of this transformation is derived directly from the validity of defunctionalization.

Proposition 2 (Validity of Defunctionalization). 　
For an arbitrary term t, eval2 and eval3 both fail to yield values or both yield values which are
structurally equal. (The value which is given by defunctionalizing the result of evaluation in eval2
is equal to the result of evaluation in eval3.)

6 Continuation Linearization

In the last section, we mentioned that continuation objects are like a list of code. However, con-
tinuation objects in eval3 are not represented as a list. Because each continuation object has at

1To be more precise, the two apply functions in Figure 3 and eval in Figure 4 need to be declared as mutually
recursive functions.

7

'
&

$
%

¡¡©©©

...

²± °̄c

?

²± °̄c

?

²± °̄c

?

&%
'$

'
&

$
%

¡¡©©©

...

²± °̄c

?

²± °̄c

?

²± °̄c

?

&%
'$

Add a parent

node to the root
to extend the
continuation

root

child

datatype

c in eval3

Add an element
to the head of
a list to extend
the continuation

head

tail

list

c in eval4

Figure 5: Continuations in eval3 and eval4

most one child, we can transform the evaluator to transfer c as a list (Figure 5). We call the new
evaluator eval4. After this transformation, we can say the argument c is a code list.

In eval3, continuation objects CApp1, CApp0, and CShift hold data of type c as an argument.
We therefore change these terms to have no data of type c. Instead, the argument c is replaced
with a list of elements of type c. While the data of type c is held in a continuation object in eval3,
a new continuation object is added to the head of the list in eval4. Then, data of type c to be
held is transferred as the tail of the list. In the case of CReset which has no data of type c, an
empty list is passed in place of the continuation object. We make a similar change in terms of d.
Definition of types is modified as follows:

1 (* value *)

2 type v = VFun of string * t * e
3 | VCont of c list (* changed to c list *)

4 and e = (* no change *) (* environment *)

5 (* continuation *)

6 and c = CApp1 of t * e (* c removed *)

7 | CApp0 of v
8 | CShift
9 (* CReset removed. use [] instead *)

10 and d = DRun of c list (* d removed *)

11 (* DReset removed. use [] instead *)

The evaluator eval4 is implemented as in Figure 6. As noted above, the last two arguments
of the evaluator are changed to c list and d list. In line 13, the evaluator passes an empty list
(cid) in stead of CReset, and the current continuation is packaged as DRun(c), which is added to
the head of the list. We can observe that the reset operator moves the current continuation from c
to d and d is a list of lists of code. Usually, shift/reset is implemented as follows: The reset operator
puts a mark on the continuation and the shift operator captures the continuation up to the mark.
Here, shift/reset is implemented as follows: The reset operator saves the current continuation into
the metacontinuation (d) and the shift operator captures the active continuation which is not saved
in d. These two styles of implementations are convertible with each other.

8

1 (* identity function *)

2 (* cid : c list *)

3 (* did : d list *)

4 let cid = []
5 let did = []
6

7 (* eval : t * e * c list * d list -> v *)

8 let rec eval (t, e, c, d) = match t with
9 Var(x) -> run_c (c, get(x, e), d)

10 | Fun(x, t) -> run_c (c, VFun(x, t, e), d)
11 | App(t0, t1) -> eval (t1, e, CApp1(t0, e) :: c, d)
12 | Shift(t) -> eval (t, e, CShift :: c, d)
13 | Reset(t) -> eval (t, e, cid , DRun(c) :: d)
14

15 (* run_c : c list * v * d list -> v *)

16 and run_c (c, v, d) = match c with
17 CApp1(t’, e’) :: c’ -> eval(t’, e’, CApp0(v) :: c’, d)
18 | CApp0(v’) :: c’ -> (match v with
19 VFun(x’, t’, e’)
20 -> eval(t’, (x’, v’) :: e’, c’, d)
21 | VCont(c’’) -> run_c (c’’, v’, DRun(c’) :: d))
22 | CShift :: c’ -> (match v with
23 VFun(x’, t’, e’)
24 -> eval(t’, (x’, VCont(c’)) :: e’, cid , d)
25 | VCont(c’’) -> run_c (c’’, VCont(c’), d))
26 | [] -> run_d (d, v)
27

28 (* run_d : d list * v -> v *)

29 and run_d (d, v) = match d with
30 DRun(c’) :: d’ -> run_c (c’, v, d’)
31 | [] -> v
32

33 (* eval4 : t -> v *)

34 let eval4 t = eval (t, [], cid , did)

Figure 6: eval4: continuation-linearization of eval3

Validity of this transformation is easily seen from the homomorphism between c in eval3 and
c list in eval4.

Proposition 3 (Validity of continuation linearization). 　
For an arbitrary term t, eval3 and eval4 both fail to yield values or both yield values which are
structurally equal. (The value which is given by linearizing the result of evaluation in eval3 is equal
to the result of evaluation in eval4.)

9

1 (* cid : c list *)

2 (* did : d list *)

3 let cid = []
4 let did = []
5

6 (* eval : t * s * e * c * d -> v *)

7 let rec eval (t, s, e, c, d) = match t with
8 Var(x) -> run_c (c, get(x, e) :: s, d)
9 | Fun(x, t) -> run_c (c, VFun(x, t, e) :: s, d)

10 | App(t0, t1) -> eval (t1, s, e, CApp1(t0, e) :: c, d)
11 | Shift(t) -> eval (t, s, e, CShift :: c, d)
12 | Reset(t) -> eval (t, [], e, cid , DRun(c, s) :: d)
13

14 (* run_c : c * s * d -> v *)

15 and run_c (c, s, d) = match c with
16 CApp1(t’, e’) :: c’ -> eval(t’, s, e’, CApp0 :: c’, d)
17 | CApp0 :: c’ ->
18 (match s with
19 VFun(x’, t’, e’) :: v’ :: s’
20 -> eval(t’, s’, (x’, v’) :: e’, c’, d)
21 | VCont(c’’, s’’) :: v’ :: s’
22 -> run_c (c’’, v’ :: s’’, DRun(c’, s’) :: d))
23 | CShift :: c’ ->
24 (match s with
25 VFun(x’, t’, e’) :: s’
26 -> eval(t’, [], (x’, VCont(c’, s’)) :: e’, cid , d)
27 | VCont(c’’, s’’) :: s’ -> run_c (c’’, VCont(c’, s’) :: s’’, d))
28 | [] -> run_d (d, s)
29

30 (* run_d : d * s -> v *)

31 and run_d (d, s) = match (d, s) with
32 (DRun(c’, s’) :: d’, v :: _) -> run_c (c’, v :: s’, d’)
33 | ([], v :: _) -> v
34

35 (* eval5 : t -> v *)

36 let eval5 t = eval (t, [], [], cid , did)

Figure 7: eval5: Stack introduction of eval4

7 Stack introduction

7.1 Transformation to store values in the stack

In eval4, values are held in continuation objects. For example, CApp0 in eval4 has v as its
argument. However, in machine languages, intermediate results are stored in a stack. To close this
gap, we provide the evaluator with a stack as an argument and store values in the stack. We call
the new evaluator eval5. In this article, the stack is implemented as a list of values. Since values
that were held in continuation objects are now stored in the stack, c in eval4 is divided into the

10

continuation object and the stack. We need to carry not only c list but the stack whenever we
use continuations. Accordingly, definition of types are changed as follows:

1 (* value *)

2 type v = VFun of string * t * e
3 | VCont of c list * s (* c list and s *)

4 (* stack *)

5 and s = v list (* list of v *)

6 and e = (* no change *) (* environment *)

7 (* continuation *)

8 and c = CApp1 of t * e
9 | CApp0 (* no value *)

10 | CShift
11 and d = DRun of c list * s (* c list and s *)

While eval4 transfers values using c as in CApp0(v), the new evaluator stores them in the stack.
Therefore, a continuation object CApp0 is modified to have no argument. The type of continuations
is modified to c list * s. (It was just c list in eval4.) Arguments of VCont and DRun are also
modified.

Then, the specification of the new evaluator eval5 is in Figure 7. As noted above, the stack s is
transferred as an argument of the evaluator and the apply functions. The evaluator stores a value
at the top of the stack and passes the entire stack instead of passing only one value (lines 8 and 9
of eval5). On applying to continuations, the evaluator restores the stack besides the continuation
object list.

7.2 Correctness of the transformation

Intuitive explanation of stack introduction and definition of the evaluator are given in Section 7.1.
However, whether stack introduction is a valid transformation is not immediately clear. In fact, it
is difficult to show simple equivalence between eval4 and eval5 because they use different types
for values and continuations. In this section, we show the equivalence between eval4 and eval5
by a bisimulation method.

First, we introduce the notion of bisimulation.

Definition 1 (bisimulation [13]). 　
Two states P and Q are bisimilar, written P ∼ Q, if, for all α,

• Whenever P −→α P ′ then, for some Q′, Q −→α
′

Q′ and P ′ ∼ Q′

• Whenever Q −→α
′

Q′ then, for some P ′, P −→α P ′ and P ′ ∼ Q′

A bisimulation is an equivalence relation between state transition systems.
A defunctionalized CPS interpreter implements an abstract machine [2, 4, 7]. We can consider

arguments of eval, run c, and run d as well as the final result of run d as states. We write
them 〈t, e, c, d〉, 〈c, v, d〉, 〈d, v〉, and 〈v〉, respectively. Then, eval4 is regarded as a state transition
machine having the transition rules denoted in Figure 8. Similarly, we can consider eval5 as a
state transition machine having transition rules shown in Figure 9.

Then, we show the equivalence between eval4 and eval5 by proving bisimulation between these
state transition systems. Prior to the proof, we determine the relation between states in eval4 and

11

t ⇒ 〈t, [], [], []〉
〈Var(x), e, c, d〉 ⇒ 〈c, get(x, e), d〉

〈Fun(x, t), e, c, d〉 ⇒ 〈c, VFun(x, t, e), d〉
〈App(t0, t1), e, c, d〉 ⇒ 〈t1, e, CApp1(t0, e) :: c, d〉
〈Shift(t), e, c, d〉 ⇒ 〈t, e, CShift :: c, d〉
〈Reset(t), e, c, d〉 ⇒ 〈t, e, [], DRun(c) :: d〉

〈CApp1(t, e) :: c, v, d〉 ⇒ 〈t, e, CApp0(v) :: c, d〉
〈CApp0(v) :: c, VFun(x, t, e), d〉 ⇒ 〈t, (x, v) :: e, c, d〉

〈CApp0(v) :: c, VCont(c′), d〉 ⇒ 〈c′, v, DRun(c) :: d〉
〈CShift :: c, VFun(x, t, e), d〉 ⇒ 〈t, (x, VCont(c)) :: e, [], d〉

〈CShift :: c, VCont(c′), d〉 ⇒ 〈c′, VCont(c), d〉
〈[], v, d〉 ⇒ 〈d, v〉

〈DRun(c′) :: d, v〉 ⇒ 〈c′, v, d〉
〈[], v〉 ⇒ 〈v〉

Figure 8: Transition rules derived from eval4

t ⇒ 〈t, [], [], [], []〉
〈Var(x), s, e, c, d〉 ⇒ 〈c, get(x, e) :: s, d〉

〈Fun(x, t), s, e, c, d〉 ⇒ 〈c, VFun(x, t, e) :: s, d〉
〈App(t0, t1), s, e, c, d〉 ⇒ 〈t1, s, e, CApp1(t0, e) :: c, d〉
〈Shift(t), s, e, c, d〉 ⇒ 〈t, s, e, CShift :: c, d〉
〈Reset(t), s, e, c, d〉 ⇒ 〈t, [], e, [], DRun(c, s) :: d〉

〈CApp1(t, e) :: c, s, d〉 ⇒ 〈t, s, e, CApp0 :: c, d〉
〈CApp0 :: c, VFun(x, t, e) :: v :: s, d〉 ⇒ 〈t, s, (x, v) :: e, c, d〉
〈CApp0 :: c, VCont(c′, s′) :: v :: s, d〉 ⇒ 〈c′, v :: s′, DRun(c, s) :: d〉

〈CShift :: c, VFun(x, t, e) :: s, d〉 ⇒ 〈t, [], (x, VCont(c, s)) :: e, [], d〉
〈CShift :: c, VCont(c′, s′) :: s, d〉 ⇒ 〈c′, VCont(c, s) :: s′, d〉

〈[], s, d〉 ⇒ 〈d, s〉
〈DRun(c′, s′) :: d, v :: s〉 ⇒ 〈c′, v :: s′, d〉

〈[], v :: s〉 ⇒ 〈v〉

Figure 9: Transition rules derived from eval5

in eval5. Remember that a continuation object in eval4 is divided into a stack and a continuation
object in eval5. With this observation, we define a relation =s c ⊗ . Intuitively, c4 =s c s ⊗ c5

means that c4 in eval4 is divided into s and c5 in eval5 by stack introduction. The notation =s c

intends to be the correspondence between states in eval4 and in eval5. Besides =s c, we need to
define three more relations =s e, =s d, =s v. They correspond to the relations of e, c, and d between
eval4 and eval5, respectively.

Definition 2 (Relations =s c, =s e, =s d, =s v). 　
Let e4, c4, d4, and v4 be values of type e, c, d, and v in eval4 and s, e5, c5, d5, and v5 be values of
type s, e, c, d, and v in eval5. Then we define mutually recursive relations c4 =s c s⊗ c5, e4 =s e e5,
d4 =s d d5, and v4 =s v v5 as the least relations satisfying the following conditions:

12

c4 =s c s ⊗ c5 :

• If c4 = [], s = [] and c5 = [], then c4 =s c s ⊗ c5

• If c4 =s c s ⊗ c5 and e4 =s c e5, then CApp14(t, e4) :: c4 =s c s ⊗ CApp15(t, e5) :: c5

• If c4 =s c s ⊗ c5 and v4 =s c v5, then CApp04(v4) :: c4 =s c v5 :: s ⊗ CApp05 :: c5

• If c4 =s c s ⊗ c5, then CShift4 :: c4 =s c s ⊗ CShift5 :: c5

e4 =s e e5 :

• If e4 = [] and e5 = [], then e4 =s e e5

• If e4 =s e e5 and v4 =s v v5, then (x, v4) :: e4 =s e (x, v5) :: e5

d4 =s d d5 :

• If d4 = [] and d5 = [], then d4 =s d d5

• If d4 =s d d5 and c4 =s c s ⊗ c5, then DRun4(c4) :: d4 =s d DRun5(c5, s)

v4 =s v v5 :

• If e4 =s e e5, then VFun4(x, t, e4) =s v VFun5(x, t, e5)

• If c4 =s c s ⊗ c5, then VCont4(c4) =s v VCont5(c5, s)

　
Now, we define a relation between the states in eval4 and eval5, and prove that it is bisimilar.

Definition 3 (Relation between evaluators before and after stack introduction). 　
The relation ∼s is defined as the least relation satisfying one of the following conditions:

• If c4 =s c s ⊗ c5, e4 =s e e5, d4 =s d d5 and v4 =s v v5, then 〈t, e4, c4, d4〉 ∼s 〈t, s, e5, c5, d5〉 for any
t.

• If c4 =s c s ⊗ c5, d4 =s d d5 and v4 =s v v5, then 〈c4, v4, d4〉 ∼s 〈c5, v5 :: s, d5〉

• If d4 =s d d5 and v4 =s v v5, then 〈d4, v4〉 ∼s 〈d5, v5 :: s′〉

• If v4 =s v v5, then 〈v4〉 ∼s 〈v5〉

Theorem 1 (Bisimulation of ∼s). 　
The relation ∼s is a bisimulation.

Proof. We write S4 and S5 for states of eval4 and eval5, respectively. Assume that P ∈ S4,
Q ∈ S5 and P ∼s Q. We prove that P −→eval4

P ′ implies Q −→eval5
Q′ and P ′ ∼s Q′ for some Q′, and

that Q −→eval5
Q′ implies P −→eval4

P ′ and P ′ ∼s Q′ for some P ′. We investigate whether the statements
are true in each of the transition rules. By assumption, we have c4 =s c s ⊗ c5, e4 =s e e5, d4 =s d d5,
and v4 =s v v5. Using these conditions, we can derive corresponding relations between arguments
after transitions.

Details of the proof for each case is presented in Appendix.

13

Because evaluations in eval4 and eval5 are both deterministic, validity of the stack introduction
is derived from the bisimulation relation between state transition systems.

Theorem 2 (Validity of stack introduction). 　
For an arbitrary term t, eval4 and eval5 both fail to yield values or both yield values which are
structurally equal. (Assume that v4 is the result of evaluation in eval4 and v5 is the result of
evaluation in eval5. Then, we have v4 =s v v5.)

This is one of the important results of this research that the validity of stack introduction is
shown formally. Although a stack is often used in the low-level description of a language, it is
not entirely clear how it relates to high-level description of the language, such as an interpreter,
especially in the presence of shift/reset. In fact, while we try to prove the correctness of the
transformation, we found and corrected tiny faults in our low-level implementation. To rigorously
derive low-level implementations that are equivalent to the high-level description, it is essential to
establish the validity of the transformation.

8 Environment storing

8.1 Transformation to save the environment in the stack

On function calls, the evaluator eval5 saves the current environment in the continuation object
(line 10 in eval5). Remember that a continuation object list is like a code list. In a machine
language, there is no operation that saves environments in the code. Thus, we transform the
evaluator to save the environment in the stack, instead of the continuation object. We call the new
evaluator eval6.

We modify CApp1 to have no environments. We package the environment as a value to be stored
in the stack. Therefore, the definition of types is modified as follows:

1 (* value *)

2 type v = VFun of string * t * e
3 | VCont of c list * s
4 | VEnv of e (* to store environment *)

5 and s = (* no change *) (* stack *)

6 and e = (* no change *) (* environment *)

7 (* continuation *)

8 and c = CApp1 of t (* no environment *)

9 | CApp0
10 | CShift
11 and d = (* no change *)

The specification of the evaluator eval6 is in Figure 10. When functions are called, the new
evaluator packages the environment as the value VEnv(e), and stores it in the stack (line 10). This
environment is loaded when executing CApp1 (lines 16-18). This models the behavior of saving and
restoring values of variables.

After this transformation, continuation objects have no data except for the term t. It means
that it is possible to yield code lists from terms only.

14

1 (* cid : c list *)

2 (* did : d list *)

3 let cid = []
4 let did = []
5

6 (* eval : t * s * e * c list * d list -> v *)

7 let rec eval (t, s, e, c, d) = match t with
8 Var(x) -> run_c (c, get(x, e) :: s, d)
9 | Fun(x, t) -> run_c (c, VFun(x, t, e) :: s, d)

10 | App(t0, t1) -> eval (t1, VEnv(e) :: s, e, CApp1(t0) :: c, d)
11 | Shift(t) -> eval (t, s, e, CShift :: c, d)
12 | Reset(t) -> eval (t, [], e, CReset :: [], DRun(c, s) :: d)
13

14 (* run_c : c list * s * d -> v *)

15 and run_c (c, s, d) = match c with
16 CApp1(t’) :: c’ ->
17 (match s with
18 v :: VEnv(e’) :: s -> eval(t’, v :: s, e’, CApp0 :: c’, d))
19 | CApp0 :: c’ ->
20 (match s with
21 VFun(x’, t’, e’) :: v’ :: s’
22 -> eval(t’, s’, (x’, v’) :: e’, c’, d)
23 | VCont(c’’, s’’) :: v’ :: s’
24 -> run_c (c’’, v’ :: s’’, DRun(c’, s’) :: d))
25 | CShift :: c’ ->
26 (match s with
27 VFun(x’, t’, e’) :: s’
28 -> eval(t’, [], (x’, VCont(c’, s’)) :: e’, CReset :: [], d)
29 | VCont(c’’, s’’) :: s’ -> run_c (c’’, VCont(c’, s’) :: s’’, d))
30 | [] -> run_d (d, s)
31

32 (* run_d : d list * s -> v *)

33 and run_d (d, s) = match (d, s) with
34 (DRun(c’, s’) :: d’, v :: _) -> run_c (c’, v :: s’, d’)
35 | ([], v :: _) -> v
36

37 (* eval6 : t -> v *)

38 let eval6 t = eval (t, [], [], cid , did)

Figure 10: eval6: an environment storing version of eval5

15

t ⇒ 〈t, [], [], [], []〉
〈Var(x), s, e, c, d〉 ⇒ 〈c, get(x, e) :: s, d〉

〈Fun(x, t), s, e, c, d〉 ⇒ 〈c, VFun(x, t, e) :: s, d〉
〈App(t0, t1), s, e, c, d〉 ⇒ 〈t1, VEnv(e) :: s, e, CApp1(t0) :: c, d〉
〈Shift(t), s, e, c, d〉 ⇒ 〈t, s, e, CShift :: c, d〉
〈Reset(t), s, e, c, d〉 ⇒ 〈t, [], e, [], DRun(c, s) :: d〉

〈CApp1(t) :: c, v :: VEnv(e) :: s, d〉 ⇒ 〈t, v :: s, e, CApp0 :: c, d〉
〈CApp0 :: c, VFun(x, t, e) :: v :: s, d〉 ⇒ 〈t, s, (x, v) :: e, c, d〉
〈CApp0 :: c, VCont(c′, s′) :: v :: s, d〉 ⇒ 〈c′, v :: s′, DRun(c, s) :: d〉

〈CShift :: c, VFun(x, t, e) :: s, d〉 ⇒ 〈t, [], (x, VCont(c, s)) :: e, [], d〉
〈CShift :: c, VCont(c′, s′) :: s, d〉 ⇒ 〈c′, VCont(c, s) :: s′, d〉

〈[], s, d〉 ⇒ 〈d, s〉
〈DRun(c′, s′) :: d, v :: s〉 ⇒ 〈c′, v :: s′, d〉

〈[], v :: s〉 ⇒ 〈v〉

Figure 11: Transition rules derived from eval6

8.2 Correctness of the transformation

As in Section 7.2, we consider eval6 as a state transition machine, whose transition rules are in
Figure 11.

As in Section 7.2, we define the relation between s5, c5 in eval5 and s6, c6 in eval6. Intuitively,
s5 ⊗ c5 =e c s6 ¯ c6 means that the environments stored in c5 in eval5 are stored in s6 in eval6. We
also define the relations =e e, =e d, and =e v.

Definition 4 (Relations =e c, =e e, =e d, =e v). 　
Let s5, e5, c5, d5, and v5 be values of type s, e, c, d, and v of eval5 and s6, e6, c6, d6, and
v6 be values of type s, e, c, d, and v of eval6. Then we define mutually recursive relations
s5 ⊗ c5 =e c s6 ¯ c6, e5 =e e e6, d5 =e d d6, and v5 =e v v6 as the least relations satisfying the following
conditions:
s5 ⊗ c5 =e c s6 ¯ c6 :

• If c5 = [], s5 = [], c6 = [], and s6 = [], then s5 ⊗ c5 =e c s6 ¯ c6

• If s5⊗c5 =e c s6¯c6 and e5 =e e e6, then s5⊗CApp15(t, e5) :: c5 =e c VEnv(e6) :: s6¯CApp16(t) :: c6

• If s5 ⊗ c5 =e c s6 ¯ c6 and v5 =e v v6, then v5 :: s5 ⊗ CApp05 :: c5 =e c v6 :: s6 ¯ CApp06 :: c6

• If s5 ⊗ c5 =e c s6 ¯ c6, then s5 ⊗ CShift5 :: c5 =e c s6 ¯ CShift6 :: c6

e5 =e e e6 :

• If e5 = [] and e6 = [], then e5 =e e e6

• If e5 =e e e6 and v5 =e v v6, then (x, v5) :: e5 =e e (x, v6) :: e6

d5 =e d d6 :

• If d5 = [] and d6 = [], then d5 =e d d6

16

• If d5 =e d d6 and s5 ⊗ c5 =e c s6 ¯ c6, then DRun5(c5, s5) :: d5 =e d DRun6(c6, s6) :: d6

v5 =e v v6 :

• If e5 =e e e6, then VFun5(x, t, e5) =e v VFun6(x, t, e6)

• If s5 ⊗ c5 =e c s6 ¯ c6, then VCont5(c5, s5) =e v VCont6(c6, s6)

　
Now, we define a relation between the states in eval5 and eval6, and prove that it is bisimilar.

Definition 5 (Relation between evaluators before and after environment storing). 　
The relation ∼e is defined as the least relation satisfying one of the following conditions:

• If s5 ⊗ c5 =e c s6 ¯ c6, e5 =e e e6, d5 =e d d6 and v5 =e v v6, then 〈t, s5, e5, c5, d5〉 ∼e 〈t, s6, e6, c6, d6〉
for any t.

• If s5 ⊗ c5 =e c s6 ¯ c6, d5 =e d d6 and v5 =e v v6, then 〈c5, v5 :: s5, d5〉 ∼e 〈c6, v6 :: s6, d6〉

• If d5 =e d d6 and v5 =e v v6, then 〈d5, v5 :: s5〉 ∼e 〈d6, v6 :: s6〉

• If v5 =e v v6, then 〈v5〉 ∼e 〈v6〉

Then, ∼e is a bisimulation.

Theorem 3 (Bisimulation of ∼e). 　
The relation ∼e is a bisimulation.

Proof. The proof is similar to the one for Theorem 1. Details are presented in [10].

Because evaluations in eval5 and eval6 are both deterministic, validity of the stack introduction
is derived from the bisimulation relation between state transition systems.

Theorem 4 (Validity of environment storing). 　
For an arbitrary term t, eval5 and eval6 both fail to yield values or both yield values which are
structurally equal. (Assume that v5 is the result of evaluation in eval5 and v6 is the result of
evaluation in eval6. Then, we have v5 =e v v6.)

9 Abstract Machine

As a result of transformations above, we obtained the abstract machine whose transition rules are
in Figure 11. This abstract machine is similar to Landin’s SECD machine [11]. However, our
abstract machine differs from the SECD machine in two points. That is:

• environments are saved in the stack, and

• shift/reset is supported (instead of J operator)

17

The former models the calling convention typically found in an implementation in a machine lan-
guage. This shows that the ”functional correspondence” approach scales to derive lower-level
implementations than previously known.

In terms of the latter, our abstract machine can be regarded as modeling the implementation of
shift/reset in a machine language. Observe that s@d corresponds to a stack in the implementation
of a machine language. Then, @ becomes the position of the reset mark and the shift operator
captures the continuation up to the reset mark. When CShift is executed in our abstract machine,
the current stack and code are captured in VCont. This corresponds exactly to the creation of a
continuation closure which contains a pointer to the copied stack and a code pointer representing
the continuation in the low-level implementation [12]. Since the abstract machine is derived using
validated transformations only, it effectively shows the correctness of the low-level implementation
of shift/reset.

10 Conclusion and Issues

In this paper, we have derived through a series of transformations an abstract machine for the
λ-calculus with shift/reset that saves the bindings of variables in the stack. The used transforma-
tions are CPS transformation, defunctionalization, continuation linearization, stack introduction,
and environment storing. Among them, we have formally shown the correctness of the last two
transformations. Although the obtained abstract machine is similar to Landin’s SECD machine,
there exists an important difference: our abstract machine saves environments in the stack, prop-
erly modeling the standard calling convention of function calls. Moreover, the abstract machine
models the direct implementation of shift/reset that copies a part of the stack, opening a door for
formally validating the low-level implementation of shift/reset.

In the future, we plan to divide the abstract machine into a compiler and a virtual machine,
following the method shown by Ager, Biernacki, Danvy, and Midtgaard [1]. Preliminary investiga-
tion shows that we can obtain the virtual machine without problems by currying eval6 so that it
receives a term first (corresponding to a compiler) and then the rest of the arguments (correspond-
ing to a virtual machine). Ultimately, we hope to extend the functional correspondence approach
to cover the low-level implementations and establish the correctness of the direct implementation
of shift/reset written in the assembly language [12].

References

[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard: “From Interpreter to Compiler and
Virtual Machine: A Functional Derivation,” Technical Report RS-03-14, BRICS, Aarhus, Den-
mark (March 2003).

[2] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard: “A Functional Correspondence between
Evaluators and Abstract Machines,” Technical Report RS-03-13, BRICS, Aarhus, Denmark
(March 2003).

[3] K. Asai, and Y. Kameyama: “Polymorphic Delimited Continuations,” Proceedings of the Fifth
Asian Symposium on Programming Languages and Systems (APLAS’07), LNCS 4807, pp. 239–
254 (November 2007).

18

[4] M. Biernacka, D. Biernacki, and O. Danvy “An Operational Foundation for Delimited Con-
tinuations in the CPS Hierarchy,” Logical Methods in Computer Science, Vol. 1 (2:5), pp. 1–39
(November 2005).

[5] O. Danvy, and A. Filinski: “A Functional Abstraction of Typed Contexts,” Technical Report
89/12, DIKU, University of Copenhagen (July 1989).

[6] O. Danvy, and A. Filinski: “Abstracting Control,” Proceedings of the 1990 ACM Conference
on Lisp and Functional Programming, pp. 151–160 (June 1990).

[7] O. Danvy, and K. Millikin: “A Rational Deconstruction of Landin’s J Operator,” Logical
Methods in Computer Science, Vol. 4 (4:12), pp. 1–67, (November 2008).

[8] M. Felleisen: “The Theory and Practice of First-Class Prompts,” Conference Record of the
15th Annual ACM Symposium on Principles of Programming Languages, pp. 180–190 (January
1988).

[9] A. Igarashi and M. Iwaki: “Deriving Compilers and Virtual Machines for a Multi-Level Lan-
guages,” Proceedings of the Fifth Asian Symposium on Programming Languages and Systems
(APLAS’07), LNCS 4807, pp. 206–221 (November 2007).

[10] A. Kitani and K. Asai: “Derivation of a Abstract Machine for Delimited continuation
Constructs,” Technical Report OCHA-IS 08-3, Ochanomizu University, (February 2009). In
Japanese. English version is in preparation.

[11] P. J. Landin: “The mechanical evaluation of expressions,” The Computer Journal, Vol. 6,
No. 4, pp. 308–320, (1964).

[12] M. Masuko and K. Asai “Direct Implementation of Shift and Reset in the MinCaml Compiler,”
Submitted for publication (March 2009).

[13] R. Milner: Communication and Concurrency, Prentice Hall International Series in Computer
Science, (1995).

[14] G. D. Plotkin: “Call-by-name, call-by-value, and the λ-calculus,” Theoretical Computer Sci-
ence, Vol. 1, No. 2, pp. 125–159 (December 1975).

[15] J. C. Reynolds: “Definitional Interpreters for Higher-Order Programming Languages,” Pro-
ceedings of the ACM National Conference, Vol. 2, pp. 717–740, (August 1972), reprinted in
Higher-Order and Symbolic Computation, Vol. 11, No. 4, pp. 363–397, Kluwer Academic Pub-
lishers (December 1998).

[16] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten: “Revised6 report on the algorithmic
language Scheme”, http://www.r6rs.org/ (2007).

A Proof of Theorem 1

Here we present details of the proof omitted in the body of this article.

Theorem 4 (Bisimulation of ∼s) 　
The relation ∼s is a bisimulation.

19

Proof. We write S4 and S5 as states of eval4 and eval5, respectively. Assume that P ∈ S4,
Q ∈ S5 and P ∼s Q. We prove that P −→eval4

P ′ implies Q −→eval5
Q′ and P ′ ∼s Q′ for some Q′, and

that Q −→eval5
Q′ implies P −→eval4

P ′ and P ′ ∼s Q′ for some P ′.
First, we prove the former. By the assumption, we have c4 =s c s ⊗ c5, e4 =s e e5, d4 =s d d5, and

v4 =s v v5.

Case P : 〈Var(x), e4, c4, d4〉 −→eval4
P ′ : 〈c4, get(x, e4), d4〉:

In this case
Q : 〈Var(x), s, e5, c5, d5〉 −→eval5

Q′ : 〈c5, get(x, e5) :: s, d5〉,
and we have

c4 =s c s ⊗ c5, e4 =s e e5, and d4 =s d d5

Because e4 =s e e5, we have
get(x, e4) =s v get(x, e5)

So, P ′ and Q′ satisfies the second clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈Fun(x, t), e4, c4, d4〉 −→eval4
P ′ : 〈c4, VFun4(x, t, e4), d4〉:

We can prove that P −→eval4
P ′ implies Q −→eval5

Q′ and P ′ ∼s Q′ for some Q′, similarly to the
case above.

Case P : 〈App(t0, t1), e4, c4, d4〉 −→eval4
P ′ : 〈t1, e4, CApp4(t0, e4) :: c4, d4〉:

In this case,
Q : 〈App(t0, t1), s, e5, c5, d5〉 −→eval5

Q′ : 〈t1, s, e5, CApp5(t0, e5) :: c5, d5〉
and we have

c4 =s c s ⊗ c5, e4 =s e e5, and d4 =s d d5

Because c4 =s c s ⊗ c5 and e4 =s e e5, we have
CApp4(t1, e4) :: c4 =s c s ⊗ CApp5(t1, e5) :: c5

So, P ′ and Q′ satisfies the first clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈Shift(t), e4, c4, d4〉 −→eval4
P ′ : 〈t, e4, CShift4 :: c4, d4〉:

We can prove that P −→eval4
P ′ implies Q −→eval5

Q′ and P ′ ∼s Q′ for some Q′, similarly to the
case above.

Case P : 〈Reset(t), e4, c4, d4〉 −→eval4
P ′ : 〈t, e4, [], DRun4(c4) :: d4〉:

In this case,
Q : 〈Reset(t), s, e5, c5, d5〉 −→eval5

Q′ : 〈t, [], e5, [], DRun5(c5, s) :: d5〉,
and we have

c4 =s c s ⊗ c5, e4 =s e e5, and d4 =s d d5

We have [] =s c [] ⊗ [] due to Definition 2.
Because c4 =s c s ⊗ c5, we have
DRun4(c4) :: d4 =s d DRun5(c5, s) :: d5

So, P ′ and Q′ satisfies the first clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈CApp14(t, e4) :: c4, v4, d4〉 −→eval4
P ′ : 〈t, e4, CApp04(v4) :: c4, d4〉:

In this case,
Q : 〈CApp15(t, e5) :: c5, v5 :: s, d5〉 −→eval5

Q′ : 〈t, v5 :: s, e5, CApp05 :: c5, d5〉,
and we have
CApp14(t, e4) :: c4 =s c s ⊗ CApp15(t, e5) :: c5, d4 =s d d5, and v4 =s v v5

Because CApp14(t, e4) :: c4 =s c s ⊗ CApp15(t, e5) :: c5, we have

20

c4 =s c s ⊗ c5

Then,
CApp04(v4) :: c4 =s c v5 :: s ⊗ CApp05 :: c5.

So, P ′ and Q′ satisfies the first clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈CApp04(v4) :: c4, VFun4(x, t, e4), d4〉 −→eval4
P ′ : 〈t, (x, v4) :: e4, c4, d4〉:

In this case,
Q : 〈CApp05 :: c5, VFun5(x, t, e5) :: v5 :: s, d5〉 −→eval5

Q′ : 〈t, s, (x, v5) :: e5, c5, d5〉,
and we have
CApp04(v4) :: c4 =s c v5 :: s ⊗ CApp05 :: c5, e4 =s e e5, and d4 =s d d5

Because CApp04(v4) :: c4 =s c v5 :: s ⊗ CApp05 :: c5, we have
c4 =s c s ⊗ c5 and v4 =s v v5

We also have (x, v4) :: e4 =s e (x, v5) :: e5 due to v4 =s v v5 and e4 =s e e5.
So, P ′ and Q′ satisfies the first clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈CApp04(v4) :: c4, VCont4(c′4), d4〉 −→eval4
P ′ : 〈c′4, v4, DRun4(c4) :: d4〉:

In this case,
Q : 〈CApp05 :: c5, VCont5(c′5, s

′) :: v5 :: s, d5〉 −→eval5
Q′ : 〈c′5, v5 :: s′, DRun5(c5, s) :: d5〉,

and we have
CApp04(v4) :: c4 =s c v5 :: s ⊗ CApp05 :: c5, d4 =s d d5, and v4 =s v v5

Because CApp04(v4) :: c4 =s c v5 :: s ⊗ CApp05 :: c5, we have
c4 =s c s ⊗ c5 and v4 =s v v5

Then,
DRun4(c4) :: d4 =s d DRun5(c5, s) :: d5

So, P ′ and Q′ satisfies the second clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈CShift4 :: c4, VFun4(x, t, e4), d4〉 −→eval4
P ′ : 〈t, (x, VCont4(c4)) :: e4, [], d4〉:

In this case,
Q : 〈CShift5 :: c5, VFun5(x, t, e5) :: s, d5〉 −→eval5

Q′ : 〈t, [], (x, VCont5(c5, s)) :: e5, [], d5〉,
and we have
CShift4 :: c4 =s c s ⊗ CShift5 :: c5, d4 =s d d5, and VFun4(x, t, e4) =s v VFun5(x, t, e5)

We have [] =s c [] ⊗ [] due to Definition 2.
Because CShift4 :: c4 =s c s ⊗ CShift5 :: c5, we have

c4 =s c s ⊗ c5

We also have e4 =s e e5 because VFun4(x, t, e4) =s v VFun5(x, t, e5).
Then,

(x, VCont4(c4)) :: e4 =s e (x, VCont5(c5, s)) :: e5

So, P ′ and Q′ satisfies the first clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈CShift4 :: c4, VCont4(c′4), d4〉 −→eval4
P ′ : 〈c′4, VCont4(c4), d4〉:

In this case,
Q : 〈CShift5 :: c5, VCont5(c′5, s

′) :: s, d5〉 −→eval5
Q′ : 〈c′5, VCont5(c5, s) :: s′, d5〉,

and we have
CShift4 :: c4 =s c s ⊗ CShift5 :: c5, d4 =s d d5, and VCont4(c′4) =s v VCont5(c′5, s

′)
Because CShift4 :: c4 =s c s ⊗ CShift5 :: c5, we have

c4 =s c s ⊗ c5

Then,

21

VCont4(c4) =s v VCont5(c5, s)
We also have c′4 =s c s′ ⊗ c′5 because VCont4(c′4) =s v VCont5(c′5, s

′).
So, P ′ and Q′ satisfies the second clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈[], v4, d4〉 −→eval4
P ′ : 〈d4, v4〉:

In this case,
Q : 〈[], v5 :: s, d5〉 −→eval5

Q′ : 〈d5, v5 :: s〉,
and we have

d4 =s d d5, and v4 =s v v5

P ′ and Q′ satisfies the third clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈DRun4(c′4) :: d4, v4〉 −→eval4
P ′ : 〈c′4, v4, d4〉:

In this case,
Q : 〈DRun5(c′5, s

′) :: d5, v5 :: s〉 −→eval5
Q′ : 〈c′5, v5 :: s′, d5〉,

and we have
DRun4(c′4) :: d4 =s d DRun5(c′5, s

′) :: d5, and v4 =s v v5

Because DRun4(c′4) :: d4 =s d DRun5(c′5, s
′) :: d5, we have

c′4 =s c s′ ⊗ c′5 and d4 =s d d5

So, P ′ and Q′ satisfies the second clause of Definition 3, that is, P ′ ∼s Q′.

Case P : 〈[], v4〉 −→eval4
P ′ : 〈v4〉:

In this case,
Q : 〈[], v5 :: s〉 −→eval5

Q′ : 〈v5〉
and we have

v4 =s v v5

P ′ and Q′ satisfies the fourth of Definition 3, that is, P ′ ∼s Q′.

Therefore, the former, P −→eval4
P ′ implies Q −→eval5

Q′ and P ′ ∼s Q′ for some Q′, is proved.
In terms of the latter, we can prove it in a similar way. Thus, ∼s is a bisimulation.

B Proof of Theorem 3

We can prove Theorem 3 in a similar way to Theorem 1.

Theorem 5 (Bisimulation of ∼e) 　
The relation ∼e is a bisimulation.

Proof. We write S5 and S6 as states of eval5 and eval6, respectively. Assume that P ∈ S5,
Q ∈ S6 and P ∼e Q. We prove that P −→eval5

P ′ implies Q −→eval6
Q′ and P ′ ∼e Q′ for some Q′, and

that Q −→eval6
Q′ implies P −→eval5

P ′ and P ′ ∼e Q′ for some P ′.
First, we prove the former. By the assumption, we have s5 ⊗ c5 =e c s6 ¯ c6, e5 =e e e6, d5 =e d d6,

and v5 =e v v6.

Case P : 〈Var(x), s5, e5, c5, d5〉 −→eval5
P ′ : 〈c5, get(x, e5), d5〉:

In this case
Q : 〈Var(x), s6, e6, c6, d6〉 −→eval6

Q′ : 〈c6, get(x, e6) :: s6, d6〉,
and we have

22

s5 ⊗ c5 =e c s6 ¯ c6, e5 =e e e6, and d5 =e d d6

Because e5 =e e e6, we have
get(x, e5) =e v get(x, e6)

So, P ′ and Q′ satisfies the second clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈Fun(x, t), s5, e5, c5, d5〉 −→eval5
P ′ : 〈c5, VFun5(x, t, e5), d5〉:

We can prove that P −→eval5
P ′ implies Q −→eval6

Q′ and P ′ ∼e Q′ for some Q′, similarly to the
case above.

Case P : 〈App(t0, t1), s5, e5, c5, d5〉 −→eval5
P ′ : 〈t1, s5, e5, CApp5(t0, e5) :: c5, d5〉:

In this case,
Q : 〈App(t0, t1), s6, e6, c6, d6〉 −→eval6

Q′ : 〈t1, VEnv(e6) :: s6, e6, CApp6(t0) :: c6, d6〉
and we have

s5 ⊗ c5 =e c s6 ¯ c6, e5 =e e e6, and d5 =e d d6

Because s5 ⊗ c5 =e c s6 ¯ c6 and e5 =e e e6, we have
s5 ⊗ CApp5(t1, e5) :: c5 =e c VEnv(e6) :: s6 ¯ CApp6(t1) :: c6

So, P ′ and Q′ satisfies the first clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈Shift(t), s5, e5, c5, d5〉 −→eval5
P ′ : 〈t, s5, e5, CShift5 :: c5, d5〉:

We can prove that P −→eval5
P ′ implies Q −→eval6

Q′ and P ′ ∼e Q′ for some Q′, similarly to the
case above.

Case P : 〈Reset(t), s5, e5, c5, d5〉 −→eval5
P ′ : 〈t, [], e5, [], DRun5(c5, s5) :: d5〉:

In this case,
Q : 〈Reset(t), s6, e6, c6, d6〉 −→eval6

Q′ : 〈t, [], e6, [], DRun6(c6, s6) :: d6〉,
and we have

s5 ⊗ c5 =e c s6 ¯ c6, e5 =e e e6, and d5 =e d d6

We have [] ⊗ [] =e c [] ¯ [] due to Definition 2.
Because s5 ⊗ c5 =e c s6 ¯ c6, we have
DRun5(c5, s5) :: d5 =e d DRun6(c6, s6) :: d6

So, P ′ and Q′ satisfies the first clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈CApp15(t, e5) :: c5, v5 :: s5, d5〉 −→eval5
P ′ : 〈t, v5 :: s5, e5, CApp05 :: c5, d5〉:

In this case,
Q : 〈CApp16(t) :: c6, v6 :: VEnv(e6) :: s6, d6〉 −→eval6

Q′ : 〈t, v6 :: s6, e6, CApp06 :: c6, d6〉,
and we have

s5 ⊗ CApp15(t, e5) :: c5 =e c VEnv(e6) :: s6 ¯ CApp16(t) :: c6, and d5 =e d d6

Because s5 ⊗ CApp15(t, e5) :: c5 =e c VEnv(e6) :: s6 ¯ CApp16(t, e6) :: c6, we have
s5 ⊗ c5 =e c s6 ¯ c6

Then,
v5 :: s5 ⊗ CApp05 :: c5 =e c v6 :: s6 ¯ CApp06(t) :: c6

So, P ′ and Q′ satisfies the first clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈CApp05 :: c5, VFun5(x, t, e5) :: v5 :: s5, d5〉 −→eval5
P ′ : 〈t, s5, (x, v5) :: e5, c5, d5〉:

In this case,
Q : 〈CApp06 :: c6, VFun6(x, t, e6) :: v6 :: s6, d6〉 −→eval6

Q′ : 〈t, s6, (x, v6) :: e6, c6, d6〉,
and we have

v5 :: s5 ⊗ CApp05 :: c5 =e c v6 :: s6 ¯ CApp06 :: c6, e5 =e e e6, and d5 =e d d6

23

Because v5 :: s5 ⊗ CApp05 :: c5 =e c v6 :: s6 ¯ CApp06 :: c6, we have
s5 ⊗ c5 =e c s6 ¯ c6 and v5 =e v v6

We also have (x, v5) :: e5 =e e (x, v6) :: e6 due to v5 =e v v6 and e5 =e e e6.
So, P ′ and Q′ satisfies the first clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈CApp05(v5) :: c5, VCont5(c′5, s
′
5) :: v5 :: s5, d5〉 −→eval5

P ′ : 〈c′5, v5 :: s′5, DRun5(c5, s5) :: d5〉:
In this case,

Q : 〈CApp06 :: c6, VCont6(c′6, s
′
6) :: v6 :: s6, d6〉 −→eval6

Q′ : 〈c′6, v6 :: s′6, DRun6(c6, s6) :: d6〉,
and we have

v5 :: s5 ⊗ CApp05 :: c5 =e c v6 :: s6 ¯ CApp06 :: c6, d5 =e d d6, and v5 =e v v6

Because v5 :: s5 ⊗ CApp05 :: c5 =e c v6 :: s6 ¯ CApp06 :: c6, we have
s5 ⊗ c5 =e c s6 ¯ c6 and v5 =e v v6

Then,
DRun5(c5, s5) :: d5 =e d DRun6(c6, s6) :: d6

So, P ′ and Q′ satisfies the second clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈CShift5 :: c5, VFun5(x, t, e5) :: s5, d5〉 −→eval5
P ′ : 〈t, [], (x, VCont5(c5, s5)) :: e5, [], d5〉:

In this case,
Q : 〈CShift6 :: c6, VFun6(x, t, e6) :: s6, d6〉 −→eval6

Q′ : 〈t, [], (x, VCont6(c6, s6)) :: e6, [], d6〉,
and we have

s5 ⊗ CShift5 :: c5 =e c s6 ¯ CShift6 :: c6, d5 =e d d6, and VFun5(x, t, e5) =e v VFun6(x, t, e6)
We have [] ⊗ [] =e c [] ⊗ [] due to Definition 2.
Because s5 ⊗ CShift5 :: c5 =e c s6 ¯ CShift6 :: c6, we have

s5 ⊗ c5 =e c s6 ¯ c6

We also have e5 =e e e6 because VFun5(x, t, e5) =e v VFun6(x, t, e6).
Then,

(x, VCont5(c5, s5)) :: e5 =e e (x, VCont6(c6, s6)) :: e6

So, P ′ and Q′ satisfies the first clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈CShift5 :: c5, VCont5(c′5, s
′
5) :: s5, d5〉 −→eval5

P ′ : 〈c′5, VCont5(c5, s5) :: s′5, d5〉:
In this case,

Q : 〈CShift6 :: c6, VCont6(c′6, s
′
6) :: s6, d6〉 −→eval6

Q′ : 〈c′6, VCont6(c6, s6) :: s′6, d6〉,
and we have

s5 ⊗ CShift5 :: c5 =e c s6 ¯ CShift6 :: c6, d5 =e d d6, and VCont5(c′5, s
′
5) =e v VCont6(c′6, s

′
6)

Because s5 ⊗ CShift5 :: c5 =e c s6 ¯ CShift6 :: c6, we have
s5 ⊗ c5 =e c s6 ¯ c6

Then,
VCont5(c5, s5) =e v VCont6(c6, s6)

We also have s′5 ⊗ c′5 =e c s′6 ¯ c′6 because VCont5(c′5, s
′
5) =e v VCont6(c′6, s

′
6).

So, P ′ and Q′ satisfies the second clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈[], v5 :: s5, d5〉 −→eval5
P ′ : 〈d5, v5 :: s5〉:

In this case,
Q : 〈[], v6 :: s6, d6〉 −→eval6

Q′ : 〈d6, v6 :: s6〉,
and we have

d5 =e d d6, and v5 =e v v6

P ′ and Q′ satisfies the third clause of Definition 5, that is, P ′ ∼e Q′.

24

Case P : 〈DRun5(c′5, s
′
5) :: d5, v5 :: s6〉 −→eval5

P ′ : 〈c′5, v5 :: s′5, d5〉:
In this case,

Q : 〈DRun6(c′6, s
′
6) :: d6, v6 :: s6〉 −→eval6

Q′ : 〈c′6, v6 :: s′6, d6〉,
and we have
DRun5(c′5, s

′
5) :: d5 =e d DRun6(c′6, s

′
6) :: d6, and v5 =e v v6

Because DRun5(c′5, s
′
5) :: d5 =e d DRun6(c′6, s

′
6) :: d6, we have

s′5 ⊗ c′5 =e c s′6 ⊗ c′6 and d5 =e d d6

So, P ′ and Q′ satisfies the second clause of Definition 5, that is, P ′ ∼e Q′.

Case P : 〈[], v5 :: s5〉 −→eval5
P ′ : 〈v5〉:

In this case,
Q : 〈[], v6 :: s6〉 −→eval6

Q′ : 〈v6〉
and we have

v5 =e v v6

P ′ and Q′ satisfies the fourth of Definition 5, that is, P ′ ∼e Q′.

Therefore, the former, P −→eval5
P ′ implies Q −→eval6

Q′ and P ′ ∼e Q′ for some Q′, is proved.
In terms of the latter, we can prove it in a similar way. Thus, ∼e is a bisimulation.

25

