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Abstract

We show a direct implementation ofshift/reset in the Caml Light system. This implementa-
tion enables us to program withshift/reset in a typed setting easily. The implementation supports
the optimization at return time employed in the original ZINC abstract machine. We show various
execution examples together with their types. The implementation is expected to promote the use of
delimited control operators in practice.

1 Introduction

Although it is widely recognized that the delimited control operators are useful in many situations, imple-
mentations ofshift/reset, especiallydirect implementations in atyped setting, have not been popular
so far. To break this situation, we presented a direct implementation ofshift/reset in the MinCaml
compiler [Sum05] in our previous work [MA09]. Since it implements a type system that handles answer
types explicitly, it enables us to execute various interesting examples. However, restriction of the syntax
of MinCaml prohibits us from writing more complex programs. For example, if wewant to write a partial
evaluator that usesshift/reset for let-insertion [Asa07], we need the following data type to represent
an abstract syntax tree:

type t = Var of string | Lam of string * t | App of t * t

| Shift of string * t | Reset of t | Let of string * t * t

However, since MinCaml does not support user-defined data types, we cannot define such a new type
unless we extend the MinCaml compiler itself. Additionally, a lack of garbage collection in MinCaml
prevents us from executing large programs.

In this paper, we present a direct implementation ofshift/reset in the Caml Light system, a
lightweight and portable implementation of the Caml language [Ler97]. Caml Light is rich enough to run
various interesting programs, yet it is simple enough to add new language features like delimited control
operators. We will demonstrate various execution examples and show whatit looks like to program with
typed delimited-control operators in practice.

Overview In Section 2, we introduce the delimited control operatorsshift/reset. In Section 3,
we outline the Caml Light system and the ZINC abstract machine, a core of Caml Light. The direct
implementation ofshift/reset in Caml Light is described in Section 4. Various execution examples
are shown in Section 5. We show related work in Section 6. The paper concludes in Section 7.

2 Shift and Reset

The delimited control operatorsshift andreset are proposed by Danvy and Filinski [DF90]. Intu-
itively, shift captures the current continuation andreset delimits the continuation captured byshift.

To show the behavior and the power ofshift/reset, we consider a search program. Typically, a
search program is written with backtracking which makes a program complex. Instead of backtracking,
we can write a search program in a straightforward manner if we are given non-deterministic operators.
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For example, the following functionqueen solves the N-Queen problem using three non-deterministic
operators,choice num, fail, andstart:

let queen n =

let rec loop i solution =

if i <= 0 then solution

else let j = choice_num n in

let solution2 = j :: solution in

if is_safe solution2 then loop (i - 1) solution2

else fail ()

in start (fun () -> loop n []);;

A function is safe checks whether the current partial solution satisfies the condition of the N-Queen
problem or not. The above function has an extremely simple structure. It chooses a new queen inj,
checks if it is safe to place the queen in the current partial solution, and if itis, it loops to place more
queens to the new partial solution. There is no backtracking. The trick is in the non-deterministic operator
choice num which chooses an integer between 1 andn non-deterministically. When the choice was not
good, the function callsfail which aborts the current execution and triggers another choice. In other
words, all the backtracking mechanisms are embedded into these operatorsand we can write a function
without thinking about backtracking.

Then, how can we define such operators? One answer is, to useshift/reset: 1

let choice_num n = shift (fun k -> fun cont ->

let rec loop i =

if i <= 0 then cont ()

else k i (fun () -> loop (i - 1))

in loop n);;

let fail () = shift (fun k -> fun cont -> cont ());;

let start f = reset (fun () -> let r = f () in fun _ -> r)

(fun () -> raise Not_found);;

The operatorchoice num saves the current computation ink and executes it for all the possible choices
by callingk in the recursive functionloop. In this program,k and the additional argumentcont represent
the so-calledsuccess continuation andfailure continuation, respectively [SICP, Chapter 4.3]. The former
is the computation to be backtracked, and the latter keeps other choices to be triggered byfail. The
failure continuation is passed around by making the context higher-order, which is initialized bystart.

The non-deterministic operators enable us to separatehow to search fromwhat to search. Such
operators can be implemented usingshift/reset.

3 Caml Light and ZINC

The Caml Light system is a lightweight and portable implementation of the Caml language [Ler97]. It
has a relatively simple type system (without modules or objects as was introduced in OCaml) but is
sophisticated enough to write complex programs. Therefore, Caml Light serves as a good platform for
implementing new features such asshift andreset.

Let us see how Caml Light executes programs. A program in Caml Light is compiled into a code
sequence of the ZINC abstract machine [Ler90]. The ZINC abstract machine uses an argument stack,
a return stack, an environment, an accumulator, a heap, and a program counter to execute code. Each
component is used as follows:

1The definition of these operators is due to Chihiro Kaneko.
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Argument stack It stores arguments of function calls and amark (henceforthMARK) which indicates a
boundary of arguments.

Return stack It mainly stores return frames and temporary values. The latter is called a cache. The
components of a return frame include a program counter, an environment,and a cache size (the
number of temporary values). The components of a cache include variables introduced bylet and
arguments of function calls. Trap frames which are used to implement exceptions are also stored.

Environment It stores values for variables. When closures are created, a new environment is created
from the current cache.

Accumulator It stores a closure when a function is called and the first argument when aprimitive is
called. The results of function calls are also stored.

Heap It stores various values such as closures, environments, pairs, and floating-point numbers.

The ZINC abstract machine uses two techniques to execute curried functions efficiently by storing
a MARK (a distinguished value) in the argument stack. The first one is to avoid creation of closures for
curried functions when enough arguments are supplied. The second one is to apply a returned function
directly to its arguments. Since the introduction ofshift/reset does not affect the former, we describe
the latter in detail.

For example,(fun x -> x) (fun y -> y + 1) 4 is compiled into the following code sequence:

Pushmark // push a MARK onto the argument stack

Quote 4 // push 4 onto the argument stack via the accumulator (accu)

Push

Closure 3 // push a closure of Label 3 onto the argument stack via accu

Push

Closure 2 // set a closure of Label 2 to accu

Apply // call a function stored in accu

function:

Label 2:

Label 5:

Access 0 // set the 0th element of the environment to accu

Return // return to the caller or consume one argument

Label 3:

Label 4:

Quote 1 // push 1 onto the argument stack via accu

Push

Access 0 // set the 0th element of the environment to accu

AddInt // addition of two integers

Return // return to a caller or consume one argument

After storing aMARK in the argument stack using thePushmark instruction,4 and a closurefun y -> y

+ 1 (Label 3) are pushed onto the argument stack. Then, a functionfun x -> x (Label 2) is called.
A function application is done by theApply instruction (if the application is not in a tail position). The
behavior ofApply is defined as follows:

(1) Push a return frame including a program counter (i.e., a return address) onto the return stack.

(2) Move an element stored in the top of the argument stack (i.e., the first argument) to the current
cache area.
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(3) Invoke a closure stored in the accumulator.

If we do not employ any optimization, a closurefun y -> y + 1 is returned to a caller as a result of
fun x -> x, and then it is applied to4. However, when an argument is found on the argument stack, we
can applyfun y -> y + 1 to it, shortcutting the return followed by the call. This handling is realized
by theReturn instruction inserted at the end of function bodies. The behavior ofReturn follows:

• If the top of the argument stackis aMARK: no arguments are applied to the current result (stored in
the accumulator); return to a caller.

(1) Discard the current cache.

(2) Remove aMARK from the top of the argument stack.

(3) Jump to a caller by restoring a return frame.

• If the top of the argument stack isnot aMARK: at least one argument is found for the current result;
execute the application without returning to a caller.

(1) Discard the current cache.

(2) Move a value stored in the top of the argument stack (i.e., the first argument) to a new cache
area.

(3) Directly jump to a closure which is stored in the accumulator.

If the top of the argument stack is aMARK, it means there is no applicable argument, so we return to a
caller by restoring a return frame. If the top of the argument stack is not aMARK, on the other hand, it
means there is at least one applicable argument. In this case, we can pass the value stored in the top of
the argument stack to a closure in the accumulator because the accumulator should hold a closure if a
program has passed a type checker. TheReturn instruction enables us to call a function directly without
returning to a caller if arguments of a result are given.

The behavior of theApply andReturn instructions with cache are summarized as follows. (A pair
of code and an environment(c,e) represents a closure,ε represents aMARK, and a triplet of code, an
environment, and a cache size(c,e,m) represents a return frame.)

Code Accu. Env. Size Arg. stack Return stack
Apply; c0 a = (c1,e1) e0 m0 v.s r

c1 a e1 1 s v.(c0,e0,m0).r
Return; c0 a e0 m ε.s v0 . . .vm−1.(c1,e1,m1).r0

c1 a e1 m1 s r
Return; c0 a = (c1,e1) e0 m v.s v0 . . .vm−1.r0

c1 a e1 1 s v.r0

We support the optimization realized by theReturn instruction in our implementation when the body
of shift or reset returns a function and its argument is available at the return time. See Section 4.3.

4 Implementation

In this section, we describe the implementation ofshift/reset in Caml Light in detail.
First, we extended the syntax of intermediate languages withshift andreset. We employed Asai

and Kameyama’s polymorphic type system [AK07] and slightly modified it to adapt to the evaluation
order of Caml Light (i.e., call-by-value, right-to-left). We did not use the purity restriction but used the
value restriction employed by Caml Light.
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In the bytecode interpreter, we added four instructionsShift, Reset, EndSR, andCallK as prim-
itives to supportshift/reset. Both shift andreset are compiled into code that sets the argument
to the accumulator as a closure and executesShift andReset instructions, respectively. The body of
shift andreset are compiled into code whereEndSR is inserted beforeReturn to enable the opti-
mization shown in the previous section. TheCallK instruction represents the work to be done when a
captured continuation is invoked. The definition of the behavior of these instructions is at the heart of
the implementation. Before describing them, however, let us summarize the direct implementation of
shift/reset in the MinCaml compiler [MA09]:

• Whenreset is executed, set thereset mark on the stack.

• Whenshift is executed, move a sequence of stack frames down to the nearestreset mark to the
heap.

• Maintain the invariant that a return address is always stored immediately under thereset mark.

Thereset mark introduced here (not to be confused with theMARK in the ZINC abstract machine) is used
to delimit a stack. In our implementation in Caml Light, we basically follow the same implementation
method, which is described below.

4.1 The Implementation of Reset

The implementation of theReset instruction is as follows:

(1) Push a return frame onto the return stack.

(2) Store thereset mark in both the argument stack and the return stack.

(3) Invoke a closure stored in the accumulator (this closure corresponds to the argument ofreset).

The invariant of our implementation in the Caml Light system is “in the return stack, a return frame
is always stored immediately under thereset mark.” This invariant is almost the same as the one in
the implementation in MinCaml, because a return frame corresponds to a return address. Since the
Caml Light system uses two stacks (the argument stack and the return stack), we store thereset mark
in both of them. Thereset mark in both the argument stack and the return stack are global pointers (the
reset pointers). It is stored byReset andCallK instructions. We update the value of thereset pointer
when storing it in the stacks.

4.2 The Implementation of Shift and Continuation Invocation

Based on the above implementation ofReset, we implemented theShift instruction as follows:

(1) Allocate a frame in heap to create a closure of a captured continuation.

(2) Move the stack frames down to the nearestreset mark (excluding thereset mark itself) from
both the argument stack and the return stack to the closure allocated in (1).

(3) Store the following information into the closure allocated in (1): the program counter to be exe-
cuted when this closure is applied, an environment, sizes of the two copied stack frames, a program
counter (corresponding to the captured continuation), a cache size, a position of the argument stack,
and a trap pointer to the heap (first two information is stored as a standard closure in ZINC, and
last two information is required to be compatible with exceptions).
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(4) To treat the closure as a first argument of the argument ofshift, store it into the accumulator.

(5) Invoke the closure stored in the accumulator (this closure corresponds to the argument ofshift).

In contrast to the standard closures in ZINC that contain a program counter and an environment,
closures created for captured continuations contain other information such as copied stack frames and a
cache size. They are used to restore the context in whichshift was called, when a captured continuation
is invoked. The instruction to be executed when the closure is applied isCallK. In other words, all the
closures for captured continuations have the same program counter, which is set at (3). Their behavior is
different, however, because copied stack frames are different.

A trap frame which is used to implement exceptions includes two pointers to the stack: one is to the
previous trap frame and the other is to the argument stack. A trap frame is stored in the return stack and a
pointer to the current trap frame (the trap pointer) is updated whentry is invoked. When an exception is
raised, the return stack and the argument stack are shifted to the trap pointer and a position pointed to by
a trap frame, respectively. If frames of the return stack captured byshift include a trap frame pointed
to by the trap pointer, we have to change the value of the trap pointer to point tothe nearest remaining
trap frame. Moreover, we have to correctly connect pointers included inthe copied stack frames when a
captured continuation is invoked.

The invocation of captured continuations is treated as an ordinary functionapplication. When in-
voked, they execute theCallK instruction. The behavior ofCallK is the following:

(1) Store thereset mark in both the argument stack and the return stack.

(2) Set the first argument that is stored in the top of a cache area to the accumulator.

(3) Copy the two stack frames stored in the closure to the top of the argument stack and the return
stack.

(4) Set the program to the one counter preserved in the closure (i.e., the program counter when this
continuation was captured).

In the implementation, we do not store aMARK at (1) because we force storing a return frame before a
captured continuation is invoked. We maintain the invariant that a return frameis always stored in the
top of the return stack when storing thereset mark in this way.

When the execution of the body ofreset orshift is finished, i.e., theEndSR instruction is executed,
we perform the optimization ofReturn: if a function is returned as a result ofreset or invocation of a
captured continuation and its arguments have been already given, we cancall the returned function di-
rectly. So, the behavior ofEndSR is to discard the frames so thatReturn optimization becomes possible:

(1) Discard the frames down to the nearestreset mark (including thereset mark itself) in both the
argument stack and the return stack.

(2) ExecuteReturn.

Let us examine execution of expressions includingreset andshift to see how they are handled.

The Return instruction is executed at the end of reset

For example, let us consider an expressionreset (fun () -> fun x -> x) 3. First, aMARK and3
are pushed onto the argument stack and the argument ofreset is set to the accumulator. Then,Reset is
executed and thereset mark is stored in the two stacks. By invoking the argument ofReset, a closure

6



Caml Light+ shift/reset= Caml Shift M. Masuko and K. Asai

fun x -> x is set to the accumulator. Next,EndSR is executed to remove thereset marks from the
two stacks, andReturn is executed. Since3 is on the top of the argument stack, an application(fun x

-> x) 3 is directly executed.
In this way, we maintain the optimization ofReturn in the presence ofreset.

The two stack frames are moved by shift

As another example, let us consider an expressionlet f x = shift (fun k -> k x) in reset

(fun () -> f 3 + 2). First, a closuref is stored in a cache area. After setting the argument of
reset to the accumulator,Reset is executed and thereset marks are stored in the two stacks. Next,2,
a MARK and3 are pushed onto the argument stack, andf is called. Then, a return frame (corresponding
to +) is stored in the return stack,3 (an argument off) is moved from the top of the argument stack to a
cache area (the return stack), andShift is executed.Shift moves frames of the argument stack (2 and
theMARK) and frames of the return stack (the return frame and3) to the heap.

The execution moves on to the body ofshift.

The captured continuation copies two stack frames

In the execution of the body ofshift, a MARK and the argument3 (x) are pushed onto the argument
stack.3 is moved to the top of the return stack whenk x is invoked. This value is regarded as the result
of the execution ofshift and is set to the accumulator sincek is a captured continuation. Then,CallK

pushes thereset marks onto the top of the two stacks, copies back two stack frames (2 and theMARK
for the argument stack, and the return frame and3 for the return stack) from a clousure, and executes a
continuation ofshift.

The argument stack stores necessary values to execute captured continuations, and the return stack
stores temporary values and the calling chain until a captured continuation is invoked. We restore the
necessary values to execute a captured continuation by copying back thisinformation to the two stacks.

4.3 Summary of the Implementation

Let us summarize the implementation ofshift/reset in the ZINC abstract machine. The definition of
the four instructions,Reset, Shift, CallK, andEndSR is as follows. (rpa andvsa represent areset
pointer and a stack frame of an argument stack, respectively, whilerpr andvsr are for a return stack.)

Code Accu. Env. Size Arg. stack Return stack
Reset; c0 a = (c,e) e0 m0 s r

c a e 0 rpa.s rpr.(c0,m0,e0).r
Shift; c1 (c,e) e1 m1 vsa.rpa.s vsr.rpr.r

c ((CallK,e1),c1,m1,vsa,vsr) e 0 rpa.s rpr.r
CallK; c0 ((CallK,e1),c1,m1,vsa,vsr) e m s v.r

c1 v e1 m1 vsa.rpa.s vsr.rpr.r
EndSR; Return; c a e m vsa.rpa.s vsr.rpr.(c0,m0,e0).r

Return; c a e 0 s (c0,m0,e0).r

The compilerC [[−]] is defined as follows. (TheCur instruction creates a closure from an argument
and an environment.)

C [[shift (λM)]] = Cur(C [[M]]; EndSR; Return); Shift
C [[reset (λM)]] = Pushmark; Cur(C [[M]]; EndSR; Return); Reset

C [[reset (λM) N1 . . .Nk]] =
Pushmark; C [[Nk]]; Push; . . . ; C [[N1]]; Push; Cur(C [[M]]; EndSR; Return); Reset
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The compilation ofshift is simply defined as the creation of the argument closure followed by the
Shift instruction. At the end of the body ofshift, theEndSR instruction is inserted before theReturn
instruction to remove thereset mark. ThePushmark instruction is not required forshift. This is
similar to the compilation of a primitive function application:

C [[p(M1, . . . ,Mk)]] = C [[Mk]]; Push; . . . ; C [[M1]]; Push; Prim(p)

where the number of arguments is fixed and aMARK is not inserted.
The compilation ofreset is split into two cases depending on whether additional arguments are

(syntactically) available. In either case,Pushmark is required at the beginning to achieve the optimiza-
tion of Return correctly. When the execution of the body ofreset finishes,EndSR is executed to
remove thereset mark (set byReset or CallK instruction) followed byReturn. At this point, aMARK
is used to check whether arguments to the current result are available or not. The compilation ofreset
is similar to the compilation of the standard function application:

C [[(M N1 . . . Nk)]] = Pushmark; C [[Nk]]; Push; . . . ; C [[N1]]; Push; C [[M]]; Apply

Here,Pushmark is used to indicate available arguments.

4.4 Garbage Collection

The Caml Light system supports generational garbage collection (GC). The garbage collector searches
pointers stored in the argument stack and the return stack when the GC is invoked. Frames pointed to
by these pointers are reallocated onto the heap and the pointers are rewritten to hold the address of the
reallocated frames. We call this process recursively according to header information (a size of a frame,
a color used in the GC, and a kind of a frame) of reallocated frames. The frames included in the closure
created byShift are handled correctly because they come with header information. The onlyaddition
to the GC system is a correct traversal of thereset pointers stored in the stacks.

5 Examples

In this section, we demonstrate various execution examples. We give relatively many examples to show
what arises in a use ofshift/reset in a typed setting. Because almost all the examples require knowl-
edge on answer types, we first review the types ofshift/reset [AK07, DF89].

5.1 The Type System for Shift and Reset

A judgment of the type system forshift/reset is defined asΓ; α ⊢ e : τ; β , which means that the
expressione has the typeτ under the type contextΓ, and the execution ofe changes the answer type
from α to β . Intuitively, the answer type is a type of the value that surroundingreset returns.

On the other hand, ifΓ; α ⊢ e : τ; α holds for any type variableα , i.e., the execution of the expression
e does not affect the answer type,e is calledpure, and this judgment is represented asΓ ⊢p e : τ. Pure
expressions do not have any control effect and do not change the answer type. Constant, functions, and
expressions surrounded byreset are pure.

A function type is expressed asS / A -> T / B. It is a type of a function from the typeS to T, and
the answer type is changed fromA to B when the function is invoked. If a function is pure having the
same type variable as its answer types, its type is simply written asS -> T. We also introduce a notation
S => T to indicate animpure function. It is a function fromS to T whose answer type are not the same
type variable but are hidden for the ease of readability.
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5.2 N-Queen

Let us execute the queen program shown in Section 2. Their types are inferred as follows:

choice_num : int => int

fail : unit => ’a

start : (unit => ’a) => ’b

queen : int -> int list

# queen 4;;

- : int list = [2; 4; 1; 3]

Sincechoice num receives an integer and returns an integer non-deterministically,int => int

properly describes the behavior ofchoice num. The use of=> instead of-> indicates that an execution
of this function may incur control effects. In fact, sincechoice num usesshift in its definition, passing
an integer tochoice num causes the current continuation to be captured.

The type offail resembles that ofraise: both return an arbitrary type ’a. Becausefail stops the
current computation and triggers backtracking, thefail expression itself can have an arbitrary type.

In this example, we can regard=> as an ordinary function type, forgetting about the answer type.
However, we often have to consider the answer type if we useshift andreset in a program. To make
the answer type explicit, our implementation supports a directive to change the way types are shown.
Although our implementation omits the answer type by default and uses=> when control effects are
used, if they are required, answer types can be displayed explicitly.2

5.3 Times

The functiontimes receives a list of integers and returns their product. Since the result willbe0 if the
given list contains0, we can throw away the current computation and return0 whenever we encounter
0.

# let rec times0 = function

| [] -> 1

| 0 :: _ -> shift (fun k -> 0)

| a :: rest -> a * times0 rest;;

times0 : int list => int = <fun>

# let times lst = reset (fun () -> times0 lst);;

times : int list -> int = <fun>

# times [1; 2; 3];;

- : int = 6

# times [1; 2; 0; 3];;

- : int = 0

Because0 is immediately returned when0 is found, it constrains the type of its context to beint.
With explicit answer types, the type oftimes0 is actuallyint list / int -> int / int. There-
fore, a program such asreset (fun () -> print int (times0 [1; 2; 3])), is not typable be-
cause the type of surroundingreset is not int. On the other hand, the type oftimes is pure. The
answer type oftimes is not changed even though impuretimes0 is executed inside, because its effect
is delimited within thereset.

2When all the answer types are explicit, the types ofchoice num, fail, andstart become as follows:
choice num : int / ((unit / ’a -> ’b / ’c) / ’a -> ’b / ’c) ->

int / ((unit / ’a -> ’b / ’c) / ’a -> ’b / ’c)

fail : unit / ’a -> ’b / ((unit / ’c -> ’d / ’e) / ’c -> ’d / ’e)

start : (unit / (’a -> ’b) -> ’b / ((unit -> ’c) / ’d -> ’e / ’f)) / ’d -> ’e / ’f
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5.4 Append and Sprintf

As an example of answer type modification, we show theappend function, with the printing of answer
types enabled:

# let rec append = function

| [] -> shift (fun k -> k)

| a :: rest -> a :: append rest;;

append : ’a list / ’b -> ’a list / (’a list -> ’b) = <fun>

# let app123 = reset (fun () -> append [1; 2; 3]);;

app123 : int list / ’_a -> int list / ’_a = <fun>

# let app123’ lst = (reset (fun () -> append [1; 2; 3])) lst;;

app123’ : int list -> int list = <fun>

# app123 [4; 5; 6];;

- : int list = [1; 2; 3; 4; 5; 6]

Suppose thatappend is invoked under the answer type’b. The type of a continuation captured by
shift (fun k -> k) is ’a list -> ’b becauseappend itself returns a value of type’a list. This
continuation is returned to the surroundingreset, so the answer type ofappend is modified from’b to
’a list -> ’b. It means this example cannot be typed in a system that does not allow the answer type
modification.

Because the Caml Light system employs the value restriction, the answer typeof the let-bound value
app123 is a weak polymorphic type’ a.3 In this case, we can avoid the weak polymorphic type by
η-expandingapp123 and definingapp123 as a function that receives a list of integers, as inapp123’.

As another example, we show sprintf function [Asa09].

# let int x = string_of_int x;;

int : int -> string = <fun>

# let str (x : string) = x;;

str : string -> string = <fun>

# let percent to_str = shift (fun k -> fun x -> k (to_str x));;

percent : (’a / ’b -> ’c / ’d) / ’e -> ’c / (’a / ’b -> ’e / ’d) = <fun>

# let sprintf p = reset (fun () -> p ());;

sprintf : (unit / ’a -> ’a / ’b) -> ’b = <fun>

# sprintf (* sprintf ("The value of %s is %d.", "x", 3) *)

(fun () -> "The value of " ^ (percent str) ^ " is " ^ (percent int) ^ ".") 3 "x";;

- : string = "The value of x is 3."

A functionpercent receives a functionto str that returns the string representation of its argument.
It then aborts computation and returns a function to the enclosing context. When the returned function is
applied to an argument, it changes its representation into a string and resumesthe aborted computation.
We can understand this behavior from the type ofpercent, if we instantiate the type ofpercent as
follows:

(’a -> string) / ’e -> string / (’a -> ’e)

The answer type ofpercent (the type of its context) is modified from the original’e to ’a -> ’e,
enabling to accept another argument of type’a.

A function sprintf receives a thunk that represents a format and executes it underreset. The
result of applyingsprintf can accept as many arguments as the number ofpercent in the format. In

3This type becomes a polymorphic type’a if we employ the purity condition [AK07].
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the above example, it receives two arguments3 (of typeint) and"x" (of typestring) and returns a
string"The value of x is 3." Because the evaluation order of the Caml Light system is right-to-
left, (percent int) is evaluated before(percent string) is evaluated. So the order of arguments
is different from a standardsprintf function.

In this example, the result ofsprintf (fun () -> ...) is a function that receives two values of
typesint andstring, and returns a string. This is the example where execution would fail if we donot
consider whether aMARK is on the top of the argument stack or not when the execution of the body of
reset is finished.

5.5 Partial Evaluation

As an example that uses a data type definition, we show an online partial evaluator usingshift/reset
[Asa07]. In the following program, a functiongensym creates a new variable,add adds a new element
to an environment,get gets a value from an environment using a key, andempty env represents an
empty environment. The main function ispeval. It receives a term of the lambda calculus extended
with shift/reset andlet represented as an abstract syntax tree, defined as shown in Section 1,and
returns a partially evaluated term.

# (* dynamic type and static type *)

type sval_t = Dyn of t | Sta of t * (sval_t / sval_t -> sval_t / sval_t);;

Type sval_t defined.

# (* get a program (term) *)

let lift = function Dyn d -> d | Sta (d, s) -> d;;

lift : sval_t -> t = <fun>

# let rec peval term env = match term with (* partial evaluator *)

| Var x -> get x env

| Lam (x, t) -> let new_x = gensym x in let new_k = gensym "k" in

Sta (Lam (new_x, Shift (new_k,

lift (reset (fun () -> Dyn (Reset (App (Var new_k,

lift (peval t (add env x (Dyn (Var new_x))))))))))),

fun arg -> peval t (add env x arg))

| App (t1, t2) -> let f = peval t1 env in let a = peval t2 env in

(match f with

| Dyn d -> let new_t = gensym "t" in

shift (fun cont -> Dyn (Let (new_t, App (d, lift a),

lift (cont (Dyn (Var new_t))))))

| Sta (d, s) -> s a)

| Shift (k, t) ->

shift (fun cont -> let new_v = gensym "v" in

peval t (add env k

(Sta (Lam (new_v, Reset (lift (cont (Dyn (Var new_v))))),

cont))))

| Reset t -> reset (fun () -> peval t env)

| Let (x, t1, t2) -> peval (App (Lam (x, t2), t1)) env;;

peval : t => (string => sval_t) => sval_t = <fun>

# let f term = init (); (* initialize gensym *)

let result = lift (reset (fun () -> peval term empty_env)) in (* then do PE, *)

print_string (to_string result); print_newline ();; (* and print a result *)

f : t -> unit = <fun>

# let e = Lam ("x", Reset (App (Shift ("k", Var "k"), Var "x")));;

e : t = Lam ("x", Reset (App (Shift ("k", Var "k"), Var "x")))
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# f e;;

(lam x1. (shift k2. (reset (k2 @ (lam v3. (reset (let t4 = (v3 @ x1) in t4)))))))

- : unit = ()

A type sval t represents a symbolic value, which is either a dynamic value or a static value. The
former is used to residualize a program, while the latter is used to reduce a program during partial
evaluation. A dynamic valueDyn brings a program text, while a static valueSta brings a static value in
addition to a program text. The functionlift turns a symbolic value into a program text by extracting its
dynamic part. Inpeval, shift is used for let-insertion of a function application and for the evaluation
of shift itself.

In the current implementation, if the answer types of a function type is omitted, asin let f (x :

int -> int) = x, we regard this function as pure and complement them with a polymorphic type vari-
able’a. However, we disallow omission of answer types in a type declaration, because complementing
type variables leads to unbound type variables:

# type t = A of int / ’a -> int / ’a;;

Toplevel input:

> type t = A of int / ’a -> int / ’a;;

> ^^

The type variable a is unbound.

Although some programs are typable by mechanically adding type parameters,as intype ’a t = A

of int / ’a -> int / ’a, this is not always the case. In fact, the following natural definition of
sval t for the above example:

type sval_t = Dyn of t | Sta of t * (sval_t -> sval_t);;

does not work, because neither

type ’a sval_t =

| Dyn of t | Sta of t * (’a sval_t / ’a -> ’a sval_t / ’a);;

nor

type (’a, ’b) sval_t =

| Dyn of t | Sta of t * ((’a, ’b) sval_t / ’a -> (’a, ’b) sval_t / ’b);;

passes the type check. Rather than automatically complementing type variables,we ask the user to write
them explicitly, as in the definition of typesval t at the beginnig of this section.

6 Related Work

Gasbichler and Sperber presented a direct implementation ofshift/reset andcontrol in the Scheme
48 system [GS02]. They showed that the direct implementation eases the overhead of the indirect imple-
mentation usingcall/cc and improves the execution efficiency. They employed incremental stack/heap
strategy and used PreScheme, a virtual machine for the Scheme 48 system.

Rompf et al. implementedshift/reset that supports the answer type modification using the plug-
gable typing architecture of Scala [RMO09]. They discriminate expressions whether they have control
effects or not using types, and selectively transform them into CPS. Their method improves the efficiency
problem of full CPS transformation and achieves the implementation in a widely-used programming lan-
guage.

Kiselyov showed a generic approach to implement multi-prompt delimited control operators and
applied it to OCaml and Scheme [Kis10]. He implementedshift/reset directly without modifying
the existing implementation that supports both the exception and the recovery from the stack overflow.
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7 Conclusion and Future Work

We described the direct implementation ofshift/reset in the Caml Light system and demonstrated
various examples on it. Although the basic idea is the same as our previous work on the MinCaml
compiler, applicability of the result differs significantly. We can now program with shift/reset in the
typed setting easily and experiment with various programs on it.

We are now trying to establish the formal correctness of our implementation using the functional
derivation approach. The comparison with other implementation techniques is remained as future work.
We are also interested in writing various applications usingshift andreset. How to tame the verbose
answer types, not only in the types of expressions but also in error messages, is another interesting topic.

Acknowledgment We would like to thank anonymous reviewers for their helpful comments.
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