
Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Delimited Continuations for Everyone

Kenichi Asai

Ochanomizu University, Japan

September 28, 2017

Kenichi Asai Delimited Continuations for Everyone 1/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Overview

Basics:

What are continuations?

What are delimited continuations?

Examples:

How to discard continuations: times

How to extract continuations: append

How to reorder continuations: take, A-normalize

How to wrap continuations: printf, state monad

Speculation:

Toward delimited continuations in theorem proving

Kenichi Asai Delimited Continuations for Everyone 2/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Early papers on control operators

Control/prompt

M. Felleisen [POPL 1988]
“The Theory and Practice of First-Class Prompts”

Shift/reset

O. Danvy and A. Filinski [LFP 1990]
“Abstracting Control”

O. Danvy and A. Filinski [MSCS 1992]
“Representing Control,

a Study of the CPS Transformation”

Kenichi Asai Delimited Continuations for Everyone 3/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

What are continuations?

Continuation
The rest of the computation.

The current computation: · · · inside []

The rest of the computation: · · · outside []

For example: 3 + [5 ∗ 2]− 1.

The current computation: 5 ∗ 2

The current continuation: 3 + [·]− 1.

“Given a value for [·], add 3 to it and subtract 1 from
the sum.” i.e., fun x -> 3 + x - 1

Kenichi Asai Delimited Continuations for Everyone 4/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

What are continuations?

As computation proceeds, continuation changes.

3 + [5 ∗ 2]− 1:

The current computation: 5 ∗ 2

The current continuation: 3 + [·]− 1.

[3 + 10]− 1:

The current computation: 3 + 10

The current continuation: [·]− 1.

[13− 1]:

The current computation: 13− 1

The current continuation: [·].
Kenichi Asai Delimited Continuations for Everyone 5/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the current expressions, continuations,
and their types.

1 5 * (2 * 3 + 3 * 4)

2 (if 2 = 3 then "hello" else "hi")

^ " world"

Kenichi Asai Delimited Continuations for Everyone 6/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the current expressions, continuations,
and their types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] :
5 * ([·] + 3 * 4) :

2 (if 2 = 3 then "hello" else "hi")

^ " world"

Kenichi Asai Delimited Continuations for Everyone 6/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the current expressions, continuations,
and their types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int ->

2 (if 2 = 3 then "hello" else "hi")

^ " world"

Kenichi Asai Delimited Continuations for Everyone 6/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the current expressions, continuations,
and their types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if 2 = 3 then "hello" else "hi")

^ " world"

Kenichi Asai Delimited Continuations for Everyone 6/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the current expressions, continuations,
and their types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi")

^ " world"

[2 = 3] :
(if [·] ...) ^ " world" :

Kenichi Asai Delimited Continuations for Everyone 6/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the current expressions, continuations,
and their types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi")

^ " world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool ->

Kenichi Asai Delimited Continuations for Everyone 6/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the current expressions, continuations,
and their types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi")

^ " world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

Kenichi Asai Delimited Continuations for Everyone 6/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

What are delimited continuations?

Delimited Continuation
The rest of the computation up to the delimiter.

Syntax

reset (fun () -> M)

For example:

reset (fun () -> 3 + [5 * 2]) - 1

The current computation: 5 ∗ 2

The current delimited continuation: 3 + [·].

Kenichi Asai Delimited Continuations for Everyone 7/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the delimited continuations, and their types.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

Kenichi Asai Delimited Continuations for Everyone 8/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the delimited continuations, and their types.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 :

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

Kenichi Asai Delimited Continuations for Everyone 8/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the delimited continuations, and their types.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

Kenichi Asai Delimited Continuations for Everyone 8/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the delimited continuations, and their types.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" :

Kenichi Asai Delimited Continuations for Everyone 8/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Identify the delimited continuations, and their types.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" :
bool -> string

Kenichi Asai Delimited Continuations for Everyone 8/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes the body M in the empty context.

For example:

reset (fun () -> 3 + [shift (fun k -> M)]) - 1

We will see a number of examples today.
Kenichi Asai Delimited Continuations for Everyone 9/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes the body M in the empty context.

For example:

reset (fun () -> [shift (fun k -> M)]) - 1

We will see a number of examples today.
Kenichi Asai Delimited Continuations for Everyone 9/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes the body M in the empty context.

For example:

reset (fun () -> [shift (fun k -> M)]) - 1

k = reset (fun () -> 3 + [·])

We will see a number of examples today.
Kenichi Asai Delimited Continuations for Everyone 9/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes the body M in the empty context.

For example:

reset (fun () -> M) - 1

k = reset (fun () -> 3 + [·])

We will see a number of examples today.
Kenichi Asai Delimited Continuations for Everyone 9/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to discard continuations

shift (fun _ -> M)

Captured continuation is discarded.

The same as raising an exception.

For example:

reset (fun () -> 3 + shift (fun _ -> 2)) - 1

reset (fun () -> 2) - 1

k = reset (fun () -> 3 + [·])
2 - 1

1

Kenichi Asai Delimited Continuations for Everyone 10/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Replace [·] with shift (fun _ -> M) for some M .

1 5 * reset (fun () -> [·] + 3 * 4)

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

We need the type of the context to fill in the body.

Kenichi Asai Delimited Continuations for Everyone 11/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Replace [·] with shift (fun _ -> M) for some M .

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> ?)

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> ?)

We need the type of the context to fill in the body.

Kenichi Asai Delimited Continuations for Everyone 11/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Replace [·] with shift (fun _ -> M) for some M .

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> 3) ❀ 15

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> ?)

We need the type of the context to fill in the body.

Kenichi Asai Delimited Continuations for Everyone 11/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Examples

Replace [·] with shift (fun _ -> M) for some M .

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> 3) ❀ 15

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> "chao") ❀ ”chao world”

We need the type of the context to fill in the body.

Kenichi Asai Delimited Continuations for Everyone 11/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

times

The following function multiplies elements of a list:

(* times : int list -> int *)

let rec times lst = match lst with

[] -> 1

| 0 :: rest -> ???

| first :: rest -> first * times rest

Fill in the ??? so that calls like the following will return
0 without performing any multiplication.

reset (fun () -> times [1; 2; 0; 4])

Kenichi Asai Delimited Continuations for Everyone 12/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Non-solution

(* times : int list -> int *)

let rec times lst = match lst with

[] -> 1

| 0 :: rest -> 0

| first :: rest -> first * times rest

It avoids traversing the rest of the list once 0 is found,
but it still multiplies elements up to 0.

times [1; 2; 0; 4]

-> 1 * times [2; 0; 4]

-> 1 * 2 * times [0; 4]

-> 1 * 2 * 0

Kenichi Asai Delimited Continuations for Everyone 13/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Solution: discard the continuation

(* times : int list => int *)

let rec times lst = match lst with

[] -> 1

| 0 :: rest -> shift (fun _ -> 0)

| first :: rest -> first * times rest

reset (fun () -> times [1; 2; 0; 4])

-> reset (fun () -> 1 * times [2; 0; 4])

-> reset (fun () -> 1 * 2 * times [0; 4])

-> reset (fun () -> 0)

-> 0

Kenichi Asai Delimited Continuations for Everyone 14/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to extract continuations

shift (fun k -> k)

Captured continuation is returned immediately.

For example: reset (fun () -> 3 + [...] - 1)

let f = reset (fun () ->

3 + shift (fun k -> k) - 1)

Kenichi Asai Delimited Continuations for Everyone 15/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to extract continuations

shift (fun k -> k)

Captured continuation is returned immediately.

For example: reset (fun () -> 3 + [...] - 1)

let f = reset (fun () ->

3 + shift (fun k -> k) - 1)

-> let f = reset (fun () ->

shift (fun k -> k))

Kenichi Asai Delimited Continuations for Everyone 15/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to extract continuations

shift (fun k -> k)

Captured continuation is returned immediately.

For example: reset (fun () -> 3 + [...] - 1)

let f = reset (fun () ->

3 + shift (fun k -> k) - 1)

-> let f = reset (fun () ->

shift (fun k -> k))

where k = reset (fun () -> 3 + [...] - 1)

Kenichi Asai Delimited Continuations for Everyone 15/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to extract continuations

shift (fun k -> k)

Captured continuation is returned immediately.

For example: reset (fun () -> 3 + [...] - 1)

let f = reset (fun () ->

3 + shift (fun k -> k) - 1)

-> let f = reset (fun () ->

k)

where k = reset (fun () -> 3 + [...] - 1)

f 10

-> 12

Kenichi Asai Delimited Continuations for Everyone 15/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Somewhat advanced example

Here is an identity function on a list:

(* id : ’a list -> ’a list *)

let rec id lst = match lst with

[] -> [] (* A *)

| first :: rest -> first :: id rest

By modifying the line (* A *), extract the continuation
at (* A *) when called as follows:

reset (fun () -> id [1; 2; 3])

What does the extracted continuation do?

Kenichi Asai Delimited Continuations for Everyone 16/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Solution

(* id : ’a list -> ’a list *)

let rec id lst = match lst with

[] -> shift (fun k -> k)

| first :: rest -> first :: id rest

reset (fun () -> id [1; 2; 3])

-> reset (fun () -> 1 :: id [2; 3])

-> reset (fun () -> 1 :: 2 :: id [3])

-> reset (fun () -> 1 :: 2 :: 3 :: id [])

The captured cont. conses 3, 2, and 1 in this order.

Kenichi Asai Delimited Continuations for Everyone 17/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Solution

let append123 =

reset (fun () -> id [1; 2; 3]) ;;

append123 : int list => int list = <fun>

append123 [4; 5; 6] ;;

- : int list = [1; 2; 3; 4; 5; 6]

let append lst1 =

reset (fun () -> id lst1) ;;

append : ’a list -> ’a list -> ’a list = <fun>

append [1; 2; 3] [4; 5; 6];;

- : int list = [1; 2; 3; 4; 5; 6]

Kenichi Asai Delimited Continuations for Everyone 18/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to reorder continuations: take

Given a list and a number n, return the given list where
the n-th element is moved to the front.

take [0; 1; 2; 3; 4] 0 = [0; 1; 2; 3; 4]

take [0; 1; 2; 3; 4] 3 = [3; 0; 1; 2; 4]

take [0; 1; 2; 3; 4] 5 = [0; 1; 2; 3; 4]

Seemingly easy:
The original list is almost reconstructed as is.
Only the designated element is moved.

but:
The n-th element might not exist.
When found, it must be carried over to the front.

Kenichi Asai Delimited Continuations for Everyone 19/39

type found_t = Found of int | NotFound

(* int list -> int -> found_t * int list *)

let rec loop lst n = match lst with

[] -> (NotFound, [])

| first :: rest ->

if n = 0 then (Found first, rest)

else let (found, l) = loop rest (n - 1) in

(found, first :: l)

(* take : int list -> int -> int list *)

let take lst n = match loop lst n with

(NotFound, l) -> l

| (Found e, l) -> e :: l

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Simpler solution

(* loop : ’a list => int => ’a list *)

let rec loop lst n = match lst with

[] -> []

| first :: rest ->

if n = 0 then

shift (fun k -> first :: k rest)

else first :: (loop rest (n - 1))

(* take : ’a list -> int -> ’a list *)

let take lst n = reset (fun () -> loop lst n)

take [0; 1; 2; 3; 4] 3 = [3; 0; 1; 2; 4]

Kenichi Asai Delimited Continuations for Everyone 21/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

A-normalization

Given an (arithmetic) expression, return the same
expression where subexpressions are uniquely named.

-

a -

-

b c

d

a - (b - c - d) becomes:

let e1 = b - c in

let e2 = e1 - d in

let e3 = a - e2 in e3

Each ‘-’ expression is uniquely named using let.

When A-normalizer encounters b - c, it has to
insert corresponding let expression at the beginning.

Kenichi Asai Delimited Continuations for Everyone 22/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

A-normalization

(* loop : expr_t => expr_t *)

let rec loop expr = match expr with

Var (x) -> Var (x)

| Minus (e1, e2) ->

let nf1 = loop e1 in

let nf2 = loop e2 in

let x = gensym "e" in

shift (fun k ->

Let (x, Minus (nf1, nf2), k (Var x)))

(* anf : expr_t -> expr_t *)

let anf expr = reset (fun () -> loop expr)

Kenichi Asai Delimited Continuations for Everyone 23/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

A-normalization: example execution

| Minus (e1, e2) -> (reshown)

let nf1 = loop e1 in

let nf2 = loop e2 in

let x = gensym "e" in

shift (fun k ->

Let (x, Minus (nf1, nf2), k (Var x)))

〈loop[[a - (b - c - d)]]〉
→ 〈g(loop[[a]] - loop[[b - c - d]])〉
→ 〈g(a - g(loop[[b - c]] - loop[[d]]))〉
→ 〈g(a - g(g(loop[[b]] - loop[[c]]) - loop[[d]]))〉

→ 〈g(a - g(g(b - c) - loop[[d]]))〉

→ 〈let e1 = b - c in 〈g(a - g(e1 - loop[[d]]))〉〉
Kenichi Asai Delimited Continuations for Everyone 24/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

A-normalization

P. Thiemann “Cogen in Six Lines,” ICFP 1996.

The paper describes how to write a compiler
generator (“cogen”) for λ-calculus.

Three lines for variable, abstraction, and application.

Six lines because each has static/dynamic variants.

A-normalization (via shift/reset) is crucially used to
serialize expressions.

The technique also known as “let insertion” in
partial evaluation.

Kenichi Asai Delimited Continuations for Everyone 25/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to wrap continuations

shift (fun k -> fun () -> k "hello")

Abort The current computation is aborted with a
thunk.

Access It receives () from outside the context.

Resume The aborted computation is resumed with
"hello".

Kenichi Asai Delimited Continuations for Everyone 26/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to wrap continuations
reset (fun () ->

shift (fun k -> fun () -> k "hello")

^ " world") ()

↓ Abort

reset (fun () ->

fun () -> k "hello") ()

k = reset (fun () -> [] ^ " world")

↓ Access

(fun () -> k "hello") ()

↓ Resume

reset (fun () -> "hello" ^ " world")
Kenichi Asai Delimited Continuations for Everyone 27/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to wrap continuations: printf

Fill in the hole so that the following program:

reset (fun () ->

"hello " ^ [...] ^ "!") "world" ;;

would return "hello world!". (The hole acts as %s.)

Can you fill in the following hole:

reset (fun () ->

"It’s " ^ [...] ^ " o’clock!") 8 ;;

so that it returns "It’s 8 o’clock!"? (%d)

Kenichi Asai Delimited Continuations for Everyone 28/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Solution

reset (fun () -> (%s)

"hello " ^

shift (fun k -> fun x -> k x) ^

"!") "world" ;;

or even shift (fun k -> k) would do.

reset (fun () -> (%d)

"It’s " ^

shift (fun k ->

fun x -> k (string_of_int x)) ^

" o’clock!") 8 ;;

Kenichi Asai Delimited Continuations for Everyone 29/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to wrap continuations: printf

The shown solution uses shift and reset.

O. Danvy “Functional Unparsing,” JFP 1998.

This paper shows how printf can be written
type-safe in the standard functional languages
(without dependent types).

It is written in continuation-passing style (CPS) and
uses continuation in a non-trivial way.

Kenichi Asai Delimited Continuations for Everyone 30/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

State monad

Define the following without using a mutable cell:

put stores a value into a mutable cell, and

get retrives a value from the mutable cell.

For example, the following expression evaluates to 11.

put 3; (get () + put 4; get ()) + get ()

idea
Let the context higher-order, and the mutable cell is
passed outside the context (just as we did for printf).

Kenichi Asai Delimited Continuations for Everyone 31/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

State monad

reset (fun () -> ... expression ...) 0

The cell (0) is passed as an argument of the context.

let get () = shift (fun k -> fun v -> k v v)

let put v = shift (fun k -> fun _ -> k () v)

For example,

reset (fun () -> ...[get ()]...) 0

-> reset (fun () -> fun v -> k v v) 0

-> (fun v -> k v v) 0

-> k 0 0

-> reset (fun () -> ...[0]...) 0
Kenichi Asai Delimited Continuations for Everyone 32/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

State monad

A. Filinski “Representing Monads,” POPL 1994.

Any monads can be represented in direct style using
shift/reset.

Includes complete code in SML.

Kenichi Asai Delimited Continuations for Everyone 33/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Future: shift/reset in theorem proving?

The current proof assistants do not allow exception
(nor shift/reset).

If we could introduce shift and reset into theorem
proving, we are liberated from writing monadic proofs.

Questions:

Curry-Howard isomorphism for shift and reset?

What is the type of shift?

What is the logical meaning of shift?

Kenichi Asai Delimited Continuations for Everyone 34/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Curry-Howard isomorphism
Typed functional language Intuitionistic logic

Γ ⊢ e : A ∆ ⊢ A

“Under type environment Γ, “Under assumption ∆,
e has type A.” A holds.”

Γ, x : A ⊢ x : A ∆, A ⊢ A

Γ, x : B ⊢ e : A
Γ ⊢ fun x -> e : B → A

∆, B ⊢ A

∆ ⊢ B ⊃ A

Γ ⊢ f : B → A Γ ⊢ a : B
Γ ⊢ f a : A

∆ ⊢ B ⊃ A ∆ ⊢ B
∆ ⊢ A

e has type A A holds
if ⊢ e : A can be derived. if ⊢ A can be derived.

Kenichi Asai Delimited Continuations for Everyone 35/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

What is the type of shift?

We have to take the type of the context into account.

Pure (non-shift) expression can appear in any
context (answer-type polymorphic).

Shift restricts the type of its context.

The function put and get can appear only in the
higher-order context.
In general, a function type has the form:

impure A -> B @cps[C, D]

pure ∀α.A -> B @cps[α, α] ∼= A -> B

What does this type mean logically?

Kenichi Asai Delimited Continuations for Everyone 36/39

T. Griffin “A Formulae-as-Types Notion of Control,”
POPL 1990.

call/cc has type ((α → β) → α) → α, which is
classic (Peirce’s law).

It does not take the answer type into account.

What about shift?

Shift moves around a part of computation.

Logically, it cuts and pastes a part of proof tree.

Is this somehow meaning of A -> B @cps[C, D]?

Conjecture

Shift is intuitionistic: even if we use shift, we cannot
construct a term having a classic type.

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

Summary

Shift and reset are simple, but quite expressive.

We have a type system for shift and reset,
but their relationship to logic is unknown.

Q: We can always turn a program with shift/reset
into a program without by CPS transforamtion.
Are shift/reset really necessary?

A: Yes, just like higher-order functions whose
necessity must have been questioned long time
ago. They provide us with higher level of
abstraction.

Kenichi Asai Delimited Continuations for Everyone 38/39

Title Overview Basics Discard Extract Reorder A-normal Wrap State Future Summary

How to use shift/reset

OchaCaml

shift/reset-extension of Caml Light:

http://pllab.is.ocha.ac.jp/~asai/OchaCaml

Scheme Racket and Gauche support shift/reset.

Haskell Delimcc Library.

Scala Implementation via selective CPS translation.

OCaml Delimcc Library or emulation via call/cc.

Happy programming with
shift and reset!

Kenichi Asai Delimited Continuations for Everyone 39/39

	Title
	Overview
	Basics
	Discard
	Extract
	Reorder
	A-normal
	Wrap
	State
	Future
	Summary

