
Functional Derivation of a Virtual Machine
for Delimited Continuations

Kenichi Asai Arisa Kitani
Ochanomizu University

{asai,kitani.arisa}@is.ocha.ac.jp

Abstract
This paper connects the definitional interpreter for the λ-calculus
extended with delimited continuation constructs, shift and reset,
with a compiler and a low-level virtual machine that copies a
part of a data stack to implement delimited continuations. Follow-
ing the functional derivation approach proposed and popularized
by Danvy, we interrelate the two implementations via a series of
meaning-preserving program transformations whose validity is in-
dependently known. As a result, this work formally establishes the
correctness of a compiler and a low-level stack-copying implemen-
tation of delimited continuations. In particular, the resulting virtual
machine properly models when to store return addresses into a data
stack and which part of a data stack to copy. To our knowledge, this
work is the first to prove correctness of such low-level features of
delimited continuations. It also shows that the functional derivation
approach is equally applicable to establish correctness of low-level
implementations.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Control
structures; D.3.4 [Programming Languages]: Processors—Com-
pilers, Interpreters; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Control primitives; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—
Lambda calculus and related systems; I.2.2 [Artificial Intelli-
gence]: Automatic Programming—Program transformation

General Terms Languages, Theory

Keywords Functional Derivation, Delimited Continuation, Vir-
tual Machine, Defunctionalization, CPS Transformation

1. Introduction
First-class continuations play an important role in controlling flow
of execution in a flexible manner without converting a program into
continuation-passing style (CPS). In particular, delimited continu-
ations [9] find many applications due to its clear semantics through
CPS transformation, such as non-deterministic programming [9],
typed printf [4], dynamic code generation [16], and let-insertion in
partial evaluation [3, 19, 26].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’10 July 26–28, 2010, Hagenberg, Austria.
Copyright c© 2010 ACM 978-1-4503-0132-9/10/07. . . $10.00
Reprinted from PPDP’10, Proceedings of the 2010 Symposium on Principles and
Practice of Declarative Programming, July 26–28, 2010, Hagenberg, Austria., pp. 87–
97.

Background and related work As delimited continuations be-
come used in many places, various direct implementations of de-
limited continuations are proposed that copy a part of a data stack.
Gasbichler and Sperber [13] implemented delimited continuations
via stack copying on Scheme 48 bytecode. Masuko and Asai [20]
implemented delimited continuations at the PowerPC assembly
level in the MinCaml compiler framework [25]. Kiselyov [17] de-
scribes a general implementation method to introduce delimited
continuations into a system equipped with stack overflow and ex-
ceptions.

However, the correctness of these approaches relies on informal
arguments backed up with practical experience. As such, it is dif-
ficult to discuss correctness of low-level implementations such as
the one in an assembly language. Although Dybvig, Peyton Jones,
and Sabry [12] showed operational and CPS semantics for delim-
ited continuations and prove their equivalence, their formalization
is still abstract and does not model, for example, return addresses,
that are typically stored in a data stack and copied when continua-
tions are captured. Recently, Rompf, Maier, and Odersky [24] inte-
grated delimited continuations into Scala. While remarkable, their
implementation is not suitable for discussing low-level aspects such
as stack copying, because delimited continuations are emulated as
functions via type-directed, selective CPS transformation.

Our approach To establish correctness of a low-level implemen-
tation of delimited continuations, we employ the functional deriva-
tion approach proposed and popularized by Danvy [2, 8]. Starting
from the definitional interpreter for a language with delimited con-
tinuation constructs, we apply a series of meaning-preserving pro-
gram transformations whose validity is already known. Following
Danvy, we use defunctionalization [23], refunctionalization [10],
and CPS transformation [22]. In addition, we introduce several
other program transformations.

The advantage of this approach is that the correctness of derived
implementation follows directly from the correctness of program
transformations. This is in contrast to the conventional approach
where one had to prove, either by hand or using a proof assistant,
that the original implementation and the derived implementation
behave the same. Furthermore, since there are already various use-
ful transformations, we can explore the design space of implemen-
tations simply by trying one transformation after another. Thus, it is
not only used by Danvy’s group to derive various virtual machines
[1], but also used to derive a compiler and a virtual machine for a
multi-stage language that supports backquote and unquote [14].

Biernacka, Biernacki, and Danvy [6] use a functional corre-
spondence to derive an abstract machine for λ-calculus with multi-
level delimited continuations. Danvy and Millikin [11] start from
Landin’s SECD machine with the J operator [18] and derive a fam-
ily of evaluation functions. However, both of the work deal with a
high-level abstract machine that is based on a state transition sys-

87

tem rather than a low-level virtual machine that operates on instruc-
tions.

Contribution The contribution of this paper is to connect the
definitional interpreter for the λ-calculus extended with delimited
continuation constructs, shift and reset, with a compiler and a
low-level virtual machine that copies a part of a data stack to
implement delimited continuations. As a result, this work formally
establishes the correctness of a compiler and a low-level stack-
copying implementation of delimited continuations.

In the previous work [20], Masuko and the first author presented
an invariant on a data stack when continuations are captured and
invoked to implement delimited continuations. The virtual machine
presented in this paper properly models it, in addition to when to
store return addresses into a data stack and which part of a data
stack to copy. To our knowledge, this work is the first to prove
correctness of such low-level features of delimited continuations.
It also shows that the functional derivation approach is equally
applicable to establish correctness of low-level implementations.

Prerequisites We assume basic familiarity with CPS transforma-
tion [22] and defunctionalization [23]. When functions are trans-
formed into CPS, all the calls become tail calls. Such functions can
be regarded as an abstract machine where a state of the machine
consists of the arguments of the functions. We will use this fact to
derive a virtual machine for delimited continuations.

Organization This paper is organized as follows. In Section 2,
we introduce delimited continuation constructs, shift and reset, and
show the definitional interpreter for them. In Section 3, we intro-
duce a data stack into the definitional interpreter. It is decomposed
into a compiler and a virtual machine in Section 4. The virtual
machine is further transformed so that it manipulates a segmented
stack in Section 5. The property of the obtained virtual machine is
discussed in Section 6. The paper concludes in Section 7.

2. Definitional Interpreter
In this section, we introduce delimited continuation constructs,
shift and reset, and show the definitional interpreter for them.

2.1 Shift and Reset
Danvy and Filinski [9] introduced two operators, shift and reset, for
capturing the current continuation. As a concrete syntax,

shift (fun k -> M)

captures the current continuation up to the enclosing reset and binds
it to k to be used in M. The captured continuation is removed from
the current continuation: if it is not used in M, it is discarded. The
context is delimited by reset:

reset (fun () -> M)

The shift operation executed in M captures the continuation only up
to this reset expression. The exact semantics of shift and reset is
defined in Section 2.3.

For example, consider the following program:

1 + reset (fun () ->
2 + (shift (fun k -> 3 * k (k 4))))

The continuation captured by shift is up to the enclosing reset,
namely 2 + [], which is bound to k. Since the captured continu-
ation is removed from the current continuation, the above program
is reduced to:

1 + reset (fun () -> 3 * (2 + (2 + 4)))

and the result becomes 25.
Capturing delimited continuations enables us to have control

over the type of the context. Consider the following program:

type t = Var of string (* term *)
| Lam of string * t | App of t * t
| Shift of string * t | Reset of t

type xs = string list (* argument list *)

(* offset : string -> xs -> int *)
let offset x xs =

let rec loop xs n = match xs with
[] -> raise UnboundVariable

| a::rest ->
if x = a then n else loop rest (n + 1)

in loop xs 0

Figure 0. Syntax of λ-calculus with shift and reset and an auxiliary
function offset

reset (fun () ->
shift (fun k -> fun x -> k x) ^ "world")

"Hello "

The type of the body of reset appears to be a string, because the
result is a concatenation of something with "world". However, the
shift operator captures the current continuation, [] ^ "world",
binds it to k, and returns a function. Thus, the above program is
reduced to:

reset (fun () -> fun x -> x ^ "world")
"Hello "

and then to:

(fun x -> x ^ "world")
"Hello "

to produce finally "Hello world". With this observation, one can
implement typed printf using delimited continuations. Interested
readers are invited to read the first author’s article [4] which comes
with introduction to delimited continuations.

2.2 Syntax
Figure 0 shows the syntax of the input language we use in this
paper. It is a standard λ-calculus extended with shift and reset. The
figure also shows an offset function that returns the position of
a variable x in a variable list xs. The definition of offset is the
same throughout this paper.

2.3 Definitional Interpreter
Figure 1 shows the definitional interpreter for the λ-calculus with
shift and reset [9]. It is a standard CPS interpreter extended with
shift and reset. Shift captures the current continuation c, binds it
to x, and resets the current continuation to empty (i.e., an iden-
tity function). Reset delimits the continuation captured by shift by
resetting the current continuation to empty and applies the contin-
uation c of reset in direct style.

An environment is represented as two lists, a list of names
xs and a list of values vs, instead of more usual association list
of pairs of names and values. Thus, a value bound to a variable
is obtained by two functions, offset and List.nth. The latter
function returns the n’th element of a given list, starting at index
zero. The use of two lists makes it easy to decompose an interpreter
into a compiler and a virtual machine. It is called a binding-time
improvement [15, Chapter 12], a standard technique in the partial
evaluation community.

Starting from this interpreter, we derive its low-level implemen-
tation via a series of program transformations.

88

type v = VFun of (v -> c -> v) (* value *)
| VCont of c

and c = v -> v (* continuation *)

(* f1 : t -> xs -> v list -> c -> v *)
let rec f1 t xs vs c = match t with

Var(x) -> c (List.nth vs (offset x xs))
| Lam(x,t) ->

c (VFun(fun v c’ ->
f1 t (x::xs) (v::vs) c’))

| App(t0,t1) ->
f1 t0 xs vs (fun v0 ->
f1 t1 xs vs (fun v1 ->
match v0 with

VFun(f) -> f v1 c
| VCont(c’) -> c (c’ v1)))

| Shift(x,t) ->
f1 t (x::xs) (VCont(c)::vs) (fun v -> v)

| Reset(t) -> c (f1 t xs vs (fun v -> v))

(* eval1 : t -> v *)
let eval1 t = f1 t [] [] (fun v -> v)

Figure 1. Definitional interpreter for λ-calculus with shift and
reset (eval1)

3. Stack Introduction
In this section, we aim at introducing a data stack into the defi-
nitional interpreter. Instead of returning a value, the resulting in-
terpreter passes around a data stack and results of evaluation are
pushed onto the data stack. We show that a data stack is systemati-
cally introduced by splitting dynamic data hidden in a continuation
chain. To be more concrete, we will modify the representation of
a continuation c in the following way: defunctionalization (Sec-
tion 3.1), linearization (Section 3.2), stack extraction (Section 3.3),
delinearization (Section 3.4), and refunctionalization (Section 3.5).
After defunctionalization and linearization, a data stack will be ex-
tracted naturally from the type of continuations. Converting the rep-
resentation of continuations back to the original higher-order func-
tions, we will obtain a stack-based interpreter.

3.1 Defunctionalization
Figure 2 shows the result of defunctionalizing continuations. To de-
functionalize continuations, we first assign a constructor for each
continuation in a program. In Figure 1, there are three kinds of
continuations: the identity function and two continuations in the
App case. We assign them the constructors C0, CApp0, and CApp1,
respectively, with the arguments being free variables of the corre-
sponding continuations. See the definition of type c in Figure 2.

We then replace application of a continuation with a call to a
dispatch function (run_c2), which describes what to do when the
continuation object is called.

The equivalence of eval1 and eval2 follows from the correct-
ness of defunctionalization [5, 21].

3.2 Linearization
Figure 3 shows the result of linearizing continuations. The defini-
tion of type c in Figure 2 shows that a continuation consists of a
sequence of CApp0 or CApp1 with C0 at the end. Since it is isomor-
phic to the structure of a list, a continuation can be equivalently
represented as a list of frames, where a frame is either CApp0 or
CApp1 without the c component. See the definition of types f and
c in Figure 3. The functions run_c3, f3, and eval3 are accord-
ingly modified.

type v = VFun of (v -> c -> v) (* value *)
| VCont of c

and c = C0 (* continuation *)
| CApp0 of t * xs * v list * c
| CApp1 of v * c

(* run_c2 : c -> v -> v *)
let rec run_c2 c v = match c with

C0 -> v
| CApp0(t1,xs,vs,c) -> f2 t1 xs vs (CApp1(v,c))
| CApp1(v0,c) ->

(match v0 with
VFun(f) -> f v c

| VCont(c’) -> run_c2 c (run_c2 c’ v))

(* f2 : t -> xs -> v list -> c -> v *)
and f2 t xs vs c = match t with

Var(x) -> run_c2 c (List.nth vs (offset x xs))
| Lam(x,t) ->

run_c2 c (VFun(fun v c’ ->
f2 t (x::xs) (v::vs) c’))

| App(t0,t1) -> f2 t0 xs vs (CApp0(t1,xs,vs,c))
| Shift(x,t) -> f2 t (x::xs) (VCont(c)::vs) C0
| Reset(t) -> run_c2 c (f2 t xs vs C0)

(* eval2 : t -> v *)
let eval2 t = f2 t [] [] C0

Figure 2. Defunctionalized interpreter (eval2)

type v = VFun of (v -> c -> v) (* value *)
| VCont of c

and f = CApp0 of t * xs * v list (* frame *)
| CApp1 of v

and c = f list (* continuation *)

(* run_c3 : c -> v -> v *)
let rec run_c3 c v = match c with

[] -> v
| CApp0(t1,xs,vs)::c ->

f3 t1 xs vs (CApp1(v)::c)
| CApp1(v0)::c ->

(match v0 with
VFun(f) -> f v c

| VCont(c’) -> run_c3 c (run_c3 c’ v))

(* f3 : t -> xs -> v list -> c -> v *)
and f3 t xs vs c = match t with

Var(x) -> run_c3 c (List.nth vs (offset x xs))
| Lam(x,t) ->

run_c3 c (VFun(fun v c’ ->
f3 t (x::xs) (v::vs) c’))

| App(t0,t1) -> f3 t0 xs vs (CApp0(t1,xs,vs)::c)
| Shift(x,t) -> f3 t (x::xs) (VCont(c)::vs) []
| Reset(t) -> run_c3 c (f3 t xs vs [])

(* eval3 : t -> v *)
let eval3 t = f3 t [] [] []

Figure 3. Linearized interpreter (eval3)

89

type v = VFun of (v -> s -> c -> v) (* value *)
| VCont of c * s
| VEnv of v list

and f = CApp0 of t * xs (* frame *)
| CApp1

and c = f list (* continuation *)
and s = v list (* data stack *)

(* run_c4 : c -> v -> s -> v *)
let rec run_c4 c v s = match (c, s) with

([], []) -> v
| (CApp0(t1,xs)::c, VEnv(vs)::s) ->

f4 t1 xs vs (v::s) (CApp1::c)
| (CApp1::c, v0::s) ->

(match v0 with
VFun(f) -> f v s c

| VCont(c’,s’) ->
run_c4 c (run_c4 c’ v s’) s)

(* f4 : t -> xs -> v list -> s -> c -> v *)
and f4 t xs vs s c = match t with

Var(x) ->
run_c4 c (List.nth vs (offset x xs)) s

| Lam(x,t) ->
run_c4 c

(VFun(fun v s’ c’ ->
f4 t (x::xs) (v::vs) s’ c’))

s
| App(t0,t1) ->

f4 t0 xs vs (VEnv(vs)::s) (CApp0(t1,xs)::c)
| Shift(x,t) ->

f4 t (x::xs) (VCont(c,s)::vs) [] []
| Reset(t) -> run_c4 c (f4 t xs vs [] []) s

(* eval4 : t -> v *)
let eval4 t = f4 t [] [] [] []

Figure 4. Stack-based interpreter (eval4)

This local transformation is obviously correct. Thus, eval2 and
eval3 are equivalent.

3.3 Stack Extraction
Examining the types f and c in Figure 3, we notice that the con-
structors CApp0 and CApp1 contain both static (compile-time) data
and dynamic (runtime) data. The term t and the variable list xs are
compile-time data: they are fixed once the input program is given.
On the other hand, the value list v list and the value v are run-
time data: they are available only at runtime. Since our goal is to
turn an interpreter into a compiler and a virtual machine, we sepa-
rate a continuation into two parts. The static part of a continuation
will eventually become a list of instructions. (See Section 5.3.) The
dynamic part of a continuation becomes a data stack. This separa-
tion is also a binding-time improvement.

Typewise, the separation is done as follows. The type c in
Figure 3 is defined as f list. We split the definition of f into a pair
of new f and v, where the new f contains only the static part of the
old f and the dynamic part is compensated by the accompanying v.
Because the dynamic part of CApp0 has type v list rather than v,
we introduce a new constructor VEnv in v to hold a list of values.

Now, a continuation is represented as a value of type (f *
v) list. We further split it into two separate lists: f list * v
list. The former is a (new) continuation (or a control stack) and
the latter a data stack. See Figure 4. Because of this modification,

type v = VFun of (v -> s -> c -> v) (* value *)
| VCont of c * s
| VEnv of v list

and c = C0 (* continuation *)
| CApp0 of t * xs * c
| CApp1 of c

and s = v list (* data stack *)

(* run_c5 : c -> v -> s -> v *)
let rec run_c5 c v s = match (c, s) with

(C0, []) -> v
| (CApp0(t1,xs,c), VEnv(vs)::s) ->

f5 t1 xs vs (v::s) (CApp1(c))
| (CApp1(c), v0::s) ->

(match v0 with
VFun(f) -> f v s c

| VCont(c’,s’) ->
run_c5 c (run_c5 c’ v s’) s)

(* f5 : t -> xs -> v list -> s -> c -> v *)
and f5 t xs vs s c = match t with

Var(x) ->
run_c5 c (List.nth vs (offset x xs)) s

| Lam(x,t) ->
run_c5 c

(VFun(fun v s’ c’ ->
f5 t (x::xs) (v::vs) s’ c’))

s
| App(t0,t1) ->

f5 t0 xs vs (VEnv(vs)::s) (CApp0(t1,xs,c))
| Shift(x,t) ->

f5 t (x::xs) (VCont(c,s)::vs) [] C0
| Reset(t) -> run_c5 c (f5 t xs vs [] C0) s

(* eval5 : t -> v *)
let eval5 t = f5 t [] [] [] C0

Figure 5. Delinearized interpreter (eval5)

VCont receives s in addition to c. The same for VFun: it receives s
in addition to c.

The changes in types suggest how to rewrite the interpreter: a
continuation and a data stack are always passed around together;
whenever a frame is pushed onto a continuation, the corresponding
value is pushed onto a data stack; and whenever a frame is popped
from a continuation, the corresponding value is popped from a
data stack. Because of this exact correspondence, the length of the
continuation and the data stack are always the same.

Since this transformation simply changes the representation of
continuations locally, we immediately see that the transformation
is correct, i.e., eval3 and eval4 are equivalent.

This transformation is the essence of stack introduction: a data
stack is a dynamic counterpart of a continuation. We can actually
observe that the intermediate results and live variables are stored
in a data stack. However, we will defer this discussion until Sec-
tion 3.5, where the interpreter is transformed back to more readable
higher-order one.

3.4 Delinearization
The purpose of defunctionalization (Section 3.1) and linearization
(Section 3.2) of continuations was to introduce a data stack. Now
that we have successfully introduced a data stack, we apply the
reverse transformation to the representation of continuations. This
will result in a readable stack-based interpreter. Here, we change

90

type v = VFun of (v -> s -> c -> v) (* value *)
| VCont of c * s
| VEnv of v list

and c = v -> s -> v (* continuation *)
and s = v list (* data stack *)

(* f6 : t -> xs -> v list -> s -> c -> v *)
let rec f6 t xs vs s c = match t with

Var(x) -> c (List.nth vs (offset x xs)) s
| Lam(x,t) ->

c (VFun(fun v s’ c’ ->
f6 t (x::xs) (v::vs) s’ c’))

s
| App(t0,t1) ->

f6 t0 xs vs (VEnv(vs)::s)
(fun v0 (VEnv(vs)::s) ->

f6 t1 xs vs (v0::s) (fun v1 (v0::s) ->
match v0 with

VFun(f) -> f v1 s c
| VCont(c’,s’) -> c (c’ v1 s’) s))

| Shift(x,t) ->
f6 t (x::xs) (VCont(c,s)::vs) []

(fun v [] -> v)
| Reset(t) ->

c (f6 t xs vs [] (fun v [] -> v)) s

(* eval6 : t -> v *)
let eval6 t = f6 t [] [] [] (fun v [] -> v)

Figure 6. Refunctionalized interpreter (eval6)

the representation of continuations from a list back to a defunction-
alized form.

Figure 5 shows the result. Notice that we delinearize only con-
tinuations, not a data stack. As in Section 3.2, the equivalence of
eval4 and eval5 follows from the isomorphism between a list of
frames and c in Figure 5.

3.5 Refunctionalization
Finally, Figure 6 shows the result of refunctionalizing continua-
tions. Refunctionalization [10] is the left inverse of defunctional-
ization. Constructors in a defunctionalized form are transformed
into higher-order functions. If refunctionalization succeeds, its cor-
rectness follows from the correctness of defunctionalization. Thus,
we conclude that eval5 and eval6 are equivalent.

What have we obtained? Compared to the definitional inter-
preter in Figure 1, the interpreter in Figure 6 receives and returns a
data stack as an additional argument. In particular, a continuation
c receives a result value v and a data stack s. We can regard it as
pushing v on s and passing v::s as a whole to c. (We will actually
do so in the next section.)

Thus, the function f6 implements a standard stack-based inter-
preter: the value of a variable and a function is pushed onto a data
stack; the value of an application is computed by evaluating the
function part t0, pushing the result v0 on a data stack, evaluating
the argument part t1, pushing the result v1 on a data stack, and then
calling v0 with the argument v1 pushed on a data stack. The called
function extracts the argument from the data stack and continues. In
other words, we have successfully interrelated the stack-based in-
terpreter and the standard interpreter via a series of program trans-
formations.

In addition, f6 models saving and restoring of live variables vs.
Before the function part t0 is evaluated, vs is saved in a data stack.

type v = VFun of (s -> c -> v) (* value *)
| VCont of c * s
| VEnv of v list

and c = s -> v (* continuation *)
and s = v list (* data stack *)

(* f7 : t -> xs -> s -> c -> v *)
let rec f7 t xs (VEnv(vs)::s) c = match t with

Var(x) -> c ((List.nth vs (offset x xs))::s)
| Lam(x,t) ->

c (VFun(fun (v::s’) c’ ->
f7 t (x::xs) (VEnv(v::vs)::s’) c’)

::s)
| App(t0,t1) ->

f7 t0 xs (VEnv(vs)::VEnv(vs)::s)
(fun (v0::VEnv(vs)::s) ->

f7 t1 xs (VEnv(vs)::v0::s)
(fun (v1::v0::s) ->

match v0 with
VFun(f) -> f (v1::s) c

| VCont(c’,s’) -> c ((c’ (v1::s’))::s)))
| Shift(x,t) ->

f7 t (x::xs) [VEnv(VCont(c,s)::vs)]
(fun [v] -> v)

| Reset(t) ->
c ((f7 t xs [VEnv(vs)] (fun [v] -> v))::s)

(* eval7 : t -> v *)
let eval7 t = f7 t [] [VEnv([])] (fun [v] -> v)

Figure 7. Interpreter with combined arguments (eval7)

It is restored back from the data stack after the evaluation of t0,
when the evaluation of t1 requires it.

The use of program transformations to derive a stack-based in-
terpreter is particularly effective when an interpreter deals with un-
familiar constructs, such as shift and reset, and it is not obvious
how to write a stack-based interpreter for them. To capture a con-
tinuation via shift, we see in Figure 6 that a captured continuation
needs to hold not only a continuation but also a data stack (as in
VCont (c,s)) and clear the current data stack. This behavior is
consistent with a commonly-used implementation technique. Us-
ing the functional derivation approach, we can certify that such an
implementation method is correct.

4. Extracting Virtual Machine
In this section, we decompose the stack-based interpreter into a
compiler and a virtual machine. The key transformation is factor-
ization of combinators that control the dynamic behavior of pro-
grams as virtual machine instructions. To do so, we first need to
move inherited arguments to a data stack.

4.1 Combining Arguments
In the definitional interpreter (Figure 1), the argument vs is dis-
tributed (or inherited) to all the recursive calls. In particular, it be-
comes a free variable of the second continuation of App case. This
prevented us from storing vs into a data stack and forced us to pass
vs as a separate argument: even if we store vs in a data stack, there
was no guarantee that it could be safely extracted when evaluation
of t1 needed it.

After defunctionalization and stack extraction, however, we dis-
cover that vs can actually be stored in a data stack. Since vs is not
a free variable of any recursive calls any more (except for the one

91

in Lam case1), we can move vs to the stack top. The result is shown
in Figure 7. In the figure, we also moved the first argument of con-
tinuations and functions in VFun into a data stack as mentioned in
Section 3.5.

This local transformation simply combines two arguments into
one, and thus we can immediately conclude that eval6 and eval7
are equivalent.

4.2 Factoring Combinators as Instructions
We now want to decompose the interpreter in Figure 7 into a com-
piler and a virtual machine. A compiler accepts a static program
text (i.e., t and xs) and produces a list of instructions. A virtual
machine receives a list of instructions and executes it. Such de-
composition can be done by first moving dynamic arguments to all
branches and then factoring dynamic parts out as instructions.

To be more concrete, the data stack and continuation arguments
of the interpreter f7 in Figure 7 are moved to each branch of the
case dispatch on t as follows:

let rec f7 t xs = match t with
Var(x) -> fun (VEnv(vs)::s) c -> ...

| Lam(x,t) -> fun (VEnv(vs)::s) c -> ...
| App(t0,t1) -> fun (VEnv(vs)::s) c -> ...
| Shift(x,t) -> fun (VEnv(vs)::s) c -> ...
| Reset(x,t) -> fun (VEnv(vs)::s) c -> ...

Because we have eliminated an inherited argument, each fun
(VEnv(vs)::s) c -> ... does not have any free variables, i.e.,
it is a combinator. If this combinator is close enough to a machine
instruction, we can think of f7 t xs as compiling a term into an
instruction.

This is immediately true for Var case. Let us define an instruc-
tion access as follows:

let access n = fun (VEnv(vs)::s) c ->
c ((List.nth vs n)::s)

This combinator is basic enough to treat as an instruction: it takes
the n’th element of a vector vs, starting at index zero. Thus, the
Var case of f7 can be written as follows:

Var(x) -> access (offset x xs)

Note that we perform offset x xs at compile time. Because
we know the position of x in xs at compile time, we embed the
resulting number as an argument to access instruction.

For other cases, it is not so straightforward, but once we realize
that we can define an infix function composition operator (>>) in
CPS, we can use it to encode a more complex expression in an
instruction-like manner. For the App case, for example, we see that
VEnv(vs) is pushed onto the data stack at the first recursive call
(f7 t0 xs). Thus, we can introduce a push_env instruction to
accommodate this change of the data stack. The other cases are
similar. The result is shown in Figure 8.

The function f8 in Figure 8 looks like a compiler: given t and
xs, f8 recurs over the structure of t and returns instructions. In fact,
if we defunctionalize instructions (we will do so in Section 5.2), f8
actually becomes a compiler and the dispatch function becomes
a virtual machine. Before doing it, however, let us make some
observations.

First, some instructions receive arbitrarily long instructions as
an argument. For example, push_closure receives the result of
evaluating f8 t (x::xs) (which can be very long) followed by
return. Although it is not practical to provide long instructions as
an argument to another instruction, this is not a problem, because

1 For a function value, we need to copy vs to create a closure. See Sec-
tion 5.4.

type v = VFun of (s -> c -> v) (* value *)
| VCont of c * s
| VEnv of v list
| VK of c

and c = s -> v (* continuation *)
and s = v list (* data stack *)

type i = s -> c -> v (* instruction *)

(* (>>) : i -> i -> i *)
let (>>) i1 i2 = fun s c ->

i1 s (fun s’ -> i2 s’ c)

(* access : int -> i *)
let access n = fun (VEnv(vs)::s) c ->

c ((List.nth vs n)::s)

(* push_closure : i -> i *)
let push_closure code = fun (VEnv(vs)::s) c ->

c (VFun(fun (v::s’) c’ ->
code (VEnv(v::vs)::s’) c’)

::s)

(* return : i *)
let return = fun (v::VK(c’)::s) _ ->

c’ (v::s)

(* push_env : i *)
let push_env = fun (VEnv(vs)::s) c ->

c (VEnv(vs)::VEnv(vs)::s)

(* pop_env : i *)
let pop_env = fun (v0::VEnv(vs)::s) c ->

c (VEnv(vs)::v0::s)

(* call : i *)
let call = fun (v1::v0::s) c ->

match v0 with (* dummy *)
VFun(f) -> f (v1::VK(c)::s) (fun [v] -> v)

| VCont(c’,s’) -> c ((c’ (v1::s’))::s)

(* shift : i -> i *)
let shift code = fun (VEnv(vs)::s) c ->

code [VEnv(VCont(c,s)::vs)] (fun [v] -> v)

(* reset : i -> i *)
let reset code = fun (VEnv(vs)::s) c ->

c ((code [VEnv(vs)] (fun [v] -> v))::s)

(* f8 : t -> xs -> i *)
let rec f8 t xs = match t with

Var(x) -> access (offset x xs)
| Lam(x,t) ->

push_closure (f8 t (x::xs) >> return)
| App(t0,t1) ->

push_env >> f8 t0 xs >> pop_env >> f8 t1 xs
>> call

| Shift(x,t) -> shift (f8 t (x::xs))
| Reset(t) -> reset (f8 t xs)

(* eval8 : t -> v *)
let eval8 t = f8 t [] [VEnv([])] (fun [v] -> v)

Figure 8. Interpreter using combinators factored as instructions
(eval8)

92

type v = VFun of (s -> c -> d -> v) (* value *)
| VCont of c * s
| VEnv of v list
| VK of c

and c = s -> d -> v (* continuation *)
and d = v -> v (* dump (metacontinuation) *)
and s = v list (* data stack *)

type i = s -> c -> d -> v (* instruction *)

Figure 9. 2CPS interpreter (eval9), type part

we can store the result of compilation f8 t (x::xs) >> return
somewhere in the memory, and give a pointer to the first instruction
as an argument to push_closure.

Secondly, the output of the compilation is not a list of instruc-
tions but a tree of instructions. This is again not a problem, because
the operator (>>) is associative. We can always safely expand a
tree of instructions into a list of instructions.

Thirdly, Figure 8 is written in such a way that a return address
(c) is stored in a data stack when a closure is called, rather than
passing it as a continuation argument (see call instruction). For
this purpose, a new constructor VK is introduced in type v. Because
c is stored in a data stack, the continuation argument fun [v] ->
v of f in call is a dummy continuation which will never be used.
In return instruction, we see that the continuation argument is
discarded and the continuation stored in a data stack is used.

As this modification shows, there is no predefined instruction
set that we have to use. We can define and introduce a new in-
struction as we need it, so that the outcome best fits our intention.
The functional derivation approach does not imply a mechanical
process. Rather, it helps us to explore the design space of various
implementation methods.

Readers may doubt whether such modification is correct. The
equivalence between eval7 and eval8 is established by first inlin-
ing (>>) and all the instructions. The resulting interpreter is iden-
tical to eval7 except for two places. The Lam case:

c (VFun(fun (v::VK(c’)::s’) _ ->
f7 t (x::xs) (VEnv(v::vs)::s’) c’)

::s)

and the last part of App case:

match v0 with (* dummy *)
VFun(f) -> f (v1::VK(c)::s) (fun [v] -> v)

| VCont(c’,s’) -> c ((c’ (v1::s’))::s)

Now, it is easy to see they are equivalent to eval7: the continuation
argument is simply moved to the data stack. With this simple mod-
ification, a standard calling convention of storing return addresses
in a data stack is derivable.

Finally, the reset instruction is rather unusual. It installs a new
data stack [VEnv(vs)] and executes code with it. However, we
usually use only one data stack. Rather than using multiple data
stacks, we want to reuse a single data stack in a consistent way.
This is the topic of the next section.

5. Representing Dumps
The obtained combinators in Figure 8 can be almost regarded as
virtual machine instructions, because most of them simply pass on
a data stack, modifying a top few frames if necessary. If we use the
real machine stack instead of passing a data stack as an argument,
the instructions do correspond to instructions in a stack machine.

However, there are still a few exceptions. When a captured
continuation VCont(c’,s’) is applied in call:

(* (>>) : i -> i -> i *)
let (>>) i1 i2 = fun s c ->

i1 s (fun s’ -> i2 s’ c)

(* access : int -> i *)
let access n = fun (VEnv(vs)::s) c ->

c ((List.nth vs n)::s)

(* push_closure : i -> i *)
let push_closure code = fun (VEnv(vs)::s) c ->

c (VFun(fun (v::s’) c’ ->
code (VEnv(v::vs)::s’) c’)

::s)

(* return : i *)
let return = fun (v::VK(c’)::s) _ ->

c’ (v::s)

(* push_env : i *)
let push_env = fun (VEnv(vs)::s) c ->

c (VEnv(vs)::VEnv(vs)::s)

(* pop_env : i *)
let pop_env = fun (v0::VEnv(vs)::s) c ->

c (VEnv(vs)::v0::s)

(* instructions same as Figure 8 up to here *)

(* call : i *)
let call = fun (v1::v0::s) c d -> match v0 with

VFun(f) -> (* dummy *)
f (v1::VK(c)::s) (fun [v] d -> d v) d

| VCont(c’,s’) ->
c’ (v1::s’) (fun v -> c (v::s) d)

(* shift : i -> i *)
let shift code = fun (VEnv(vs)::s) c ->

code [VEnv(VCont(c,s)::vs)] (fun [v] d -> d v)

(* reset : i -> i *)
let reset code = fun (VEnv(vs)::s) c d ->

code [VEnv(vs)] (fun [v] d -> d v)
(fun v -> c (v::s) d)

(* f9 : t -> xs -> i *)
let rec f9 t xs = match t with

Var(x) -> access (offset x xs)
| Lam(x,t) ->

push_closure (f9 t (x::xs) >> return)
| App(t0,t1) ->

push_env >> f9 t0 xs >> pop_env >> f9 t1 xs
>> call

| Shift(x,t) -> shift (f9 t (x::xs))
| Reset(t) -> reset (f9 t xs)

(* eval9 : t -> v *)
let eval9 t =

f9 t [] [VEnv([])] (fun [v] d -> d v)
(fun v -> v)

Figure 9. 2CPS interpreter (eval9), continued

93

type i = IAccess of int (* instruction *)
| IPush_closure of i | IReturn
| IPush_env | IPop_env | ICall
| IShift of i | IReset of i
| ISeq of i * i

type v = VFun of (s -> c -> d -> v) (* value *)
| VCont of c * s
| VEnv of v list
| VK of c

and c = i list (* continuation *)
and d = (c * s) list (* dump *)
and s = v list (* data stack *)

Figure 10. Interpreter with defunctionalized instructions
(eval10), type part

| VCont(c’,s’) -> c ((c’ (v1::s’))::s)

c’ is applied to a saved data stack s’, which is different from the
current data stack s. In reset,

c ((code [VEnv(vs)] (fun [v] -> v))::s)

code is executed on a newly created data stack [VEnv(vs)] which
is again different from the current data stack s. Put differently,
the interpreter in Figure 8 is not wholly written in CPS, because
it contains non-tail calls to continuations. The goal of this section
is to represent this direct-style information as a data structure. It
turns out that the resulting data structure corresponds to a list of
delimited data stacks.

5.1 CPS Transformation
To represent a direct-style application of continuations as a data
structure, we transform this almost CPS interpreter into CPS one
more time. The newly introduced continuations, or metacontinua-
tions, correspond to dumps in the SECD machine [7, 18]. Figure 9
shows the result of CPS-transforming Figure 8.

Because eval8 was already written mostly in CPS, the second
CPS transformation does not change functions very much except
for their types. Although new functions receive a dump, it is usually
η-reduced and does not appear in the function definition. A dump
appears only in those instructions that explicitly modify it, namely,
call, shift, and reset.

The equivalence between eval8 and eval9 follows from the
correctness of CPS transformation.

5.2 Defunctionalization and Linearization
To represent a dump as a data structure, we defunctionalize and
linearize a dump and a continuation. At this moment, we defunc-
tionalize instructions, too. Both the processes are mechanical. The
result is shown in Figure 10.

Through defunctionalization and linearization of a dump, the
identity dump fun v -> v becomes an empty list. The dump fun
v -> c (v::s) d in call and reset has three free variables c,
s, and a dump d itself. After linearization, it becomes (c * s)
list.

Likewise, through defunctionalization and linearization of a
continuation, the identity continuation fun [v] d -> d v be-
comes an empty list. The continuation fun s’ -> i2 s’ c in
(>>) has two free variables i2 and a continuation c itself. After
linearization, it becomes a list of instructions.

The dispatch function (run_i10) for instructions is a virtual
machine: given an instruction, it operates on a data stack and a
dump. The defunctionalization of (>>) yields a sequence instruc-
tion ISeq that connects two instructions into one.

(* run_d10 : d -> v -> v *)
let rec run_d10 d v = match d with

[] -> v
| (c,s)::d’ -> run_c10 c (v::s) d’

(* run_c10 : c -> s -> d -> v *)
and run_c10 c s d = match c with

[] -> (match s with [v] -> run_d10 d v)
| g::c -> run_i10 g s c d

(* run_i10 : i -> s -> c -> d -> v *)
and run_i10 i s c d = match i with

IAccess(n) -> (match s with (VEnv(vs)::s) ->
run_c10 c ((List.nth vs n)::s) d)

| IPush_closure(code) ->
(match s with (VEnv(vs)::s) ->

run_c10 c
(VFun(fun (v::s’) c’ d’ ->

run_i10 code (VEnv(v::vs)::s’)
c’ d’)

::s) d)
| IReturn -> (match s with (v::VK(c’)::s) ->

run_c10 c’ (v::s) d)
| IPush_env -> (match s with (VEnv(vs)::s) ->

run_c10 c (VEnv(vs)::VEnv(vs)::s) d)
| IPop_env -> (match s with (v0::VEnv(vs)::s) ->

run_c10 c (VEnv(vs)::v0::s) d)
| ICall -> (match s with (v1::v0::s) ->

match v0 with (* dummy *)
VFun(f) -> f (v1::VK(c)::s) [] d

| VCont(c’,s’) ->
run_c10 c’ (v1::s’) ((c,s)::d))

| IShift(code) -> (match s with (VEnv(vs)::s) ->
run_i10 code [VEnv(VCont(c,s)::vs)] [] d)

| IReset(code) -> (match s with (VEnv(vs)::s) ->
run_i10 code [VEnv(vs)] [] ((c,s)::d))

| ISeq(f,g) -> run_i10 f s (g::c) d

(* (>>) : i -> i -> i *)
let (>>) f g = ISeq(f,g)

(* f10 : t -> xs -> i *)
let rec f10 t xs = match t with

Var(x) -> IAccess(offset x xs)
| Lam(x,t) ->

IPush_closure(f10 t (x::xs) >> IReturn)
| App(t0,t1) ->

IPush_env >> f10 t0 xs >> IPop_env
>> f10 t1 xs >> ICall

| Shift(x,t) -> IShift(f10 t (x::xs))
| Reset(t) -> IReset(f10 t xs)

(* eval10 : t -> v *)
let eval10 t =

run_i10 (f10 t []) [VEnv([])] [] []

Figure 10. Interpreter with defunctionalized instructions
(eval10), continued

94

The equivalence between eval9 and eval10 follows from the
correctness of defunctionalization and the correctness argument for
linearization we made in Section 3.2.

In the obtained interpreter, all the instructions operate only
on a data stack and a dump. They also receive a continuation as
an argument, but looking at the dispatch function (run_c10), we
notice that the only role of the continuation argument is to designate
the next instruction. If we inline run_i10 into run_c10 (as we will
do in the next section), the continuation argument disappears.

We can now regard s placed on top of d as a single system
stack. This interpretation actually models the copy of a part of a
data stack when a continuation is captured. We will discuss it in
detail in Section 6.

5.3 Code Flattening
The instructions obtained so far are structured as a tree: the in-
struction ISeq appends two trees of instructions. In this section,
we transform it into a list of instructions.

First, we observe (by unfolding run_c10) that the following
two expressions are equivalent for any i, c, s, and d:

run_c10 (i::c) s d
run_i10 i s c d

Thus, we can replace all the recursive calls in run_i10 (as well
as the initial call to run_i10 in eval10) with calls to run_c10.
With this replacement, we can inline run_i10 into run_c10 so
that run_c10 dispatches over the first instruction of c.

We then remove ISeq and replace it with an append operation @
on instructions, using a singleton list as a unit of instructions. The
result is shown in Figure 11. The function f11 now returns a list
of instructions rather than a single instruction. In IPush_closure
case of run_c11, code and c’ is appended, but because c’ is al-
ways a dummy continuation [], we do not actually have to manip-
ulate code at runtime. In the next section, the dummy continuation
disappears as the result of defunctionalization.

The equivalence between eval10 and eval11 follows from
the correctness of inlining and associativity of (>>). Wand [27,
28] used similar program transformation based on associativity of
combinators.

5.4 Defunctionalizing Function
Finally, defunctionalization of functions in VFun yields a closure
representation of functions. The type of VFun is changed to

type v = VFun of c * v list (* value *)
| ...

Namely, a closure holds a code pointer and a list of values for its
free variables. The only call site of this closure is in the ICall case.
Corresponding modification to the virtual machine (run_c11) is
simple:

| IPush_closure(code)::c ->
(match s with (VEnv(vs)::s) ->

run_c11 c (VFun(code,vs)::s) d)
| ICall::c -> (match s with (v1::v0::s) ->

match v0 with
VFun(code,vs) ->
run_c11 code (VEnv(v1::vs)::VK(c)::s) d

| VCont(c’,s’) ->
run_c11 c’ (v1::s’) ((c,s)::d))

The defunctionalized VFun constructed in the IPush_closure
case is destructed in the ICall case. Rather than defining an apply
function for VFun, it is inlined into the body of the ICall case. At
that time, the dummy continuation [] is also inlined and reduced
away.

type i = IAccess of int (* instruction *)
| IPush_closure of i list | IReturn
| IPush_env | IPop_env | ICall
| IShift of i list | IReset of i list

type v = VFun of (s -> c -> d -> v) (* value *)
| VCont of c * s
| VEnv of v list
| VK of c

and c = i list (* continuation *)
and d = (c * s) list (* dump *)
and s = v list (* data stack *)

(* run_d11 : d -> v -> v *)
let rec run_d11 d v = match d with

[] -> v
| (c,s)::d’ -> run_c11 c (v::s) d’

(* run_c11 : i list -> s -> d -> v *)
and run_c11 c s d = match c with

[] -> (match s with [v] -> run_d11 d v)
| IAccess(n)::c ->

(match s with (VEnv(vs)::s) ->
run_c11 c ((List.nth vs n)::s) d)

| IPush_closure(code)::c ->
(match s with (VEnv(vs)::s) ->
run_c11 c

(VFun(fun (v::s’) c’ d’ ->
run_c11 (code@c’) (VEnv(v::vs)::s’) d’)
::s) d)

| IReturn::c -> (match s with (v::VK(c’)::s) ->
run_c11 c’ (v::s) d)

| IPush_env::c -> (match s with (VEnv(vs)::s) ->
run_c11 c (VEnv(vs)::VEnv(vs)::s) d)

| IPop_env::c ->
(match s with (v0::VEnv(vs)::s) ->

run_c11 c (VEnv(vs)::v0::s) d)
| ICall::c -> (match s with (v1::v0::s) ->

match v0 with (* dummy *)
VFun(f) -> f (v1::VK(c)::s) [] d

| VCont(c’,s’) ->
run_c11 c’ (v1::s’) ((c,s)::d))

| IShift(code)::c ->
(match s with (VEnv(vs)::s) ->

run_c11 code [VEnv(VCont(c,s)::vs)] d)
| IReset(code)::c ->

(match s with (VEnv(vs)::s) ->
run_c11 code [VEnv(vs)] ((c,s)::d))

(* f11 : t -> xs -> i list *)
let rec f11 t xs = match t with

Var(x) -> [IAccess (offset x xs)]
| Lam(x,t) ->

[IPush_closure((f11 t (x::xs))@[IReturn])]
| App(t0,t1) ->

[IPush_env]@(f11 t0 xs)@[IPop_env]
@(f11 t1 xs)@[ICall]

| Shift(x,t) -> [IShift(f11 t (x::xs))]
| Reset(t) -> [IReset(f11 t xs)]

(* eval11 : t -> v *)
let eval11 t = run_c11 (f11 t []) [VEnv([])] []

Figure 11. Interpreter with linear instructions (eval11)

95

c ⇒ 〈c, [VEnv([])], []〉
〈IAccess(n) :: c, VEnv(vs) :: s, d〉 ⇒ 〈c, (List.nth vs n) :: s, d〉

〈IPush_closure(c′) :: c, VEnv(vs) :: s, d〉 ⇒ 〈c, VFun(c′, vs) :: s, d〉
〈IReturn :: , v :: VK(c) :: s, d〉 ⇒ 〈c, v :: s, d〉

〈IPush_env :: c, VEnv(vs) :: s, d〉 ⇒ 〈c, VEnv(vs) :: VEnv(vs) :: s, d〉
〈IPop_env :: c, v :: VEnv(vs) :: s, d〉 ⇒ 〈c, VEnv(vs) :: v :: s, d〉
〈ICall :: c, v1 :: VFun(c′, vs) :: s, d〉 ⇒ 〈c′, VEnv(v1 :: vs) :: VK(c) :: s, d〉
〈ICall :: c, v1 :: VCont(c′, s′) :: s, d〉 ⇒ 〈c′, v1 :: s′, (c, s) :: d〉

〈IShift(c′) :: c, VEnv(vs) :: s, d〉 ⇒ 〈c′, [VEnv(VCont(c, s) :: vs)], d〉
〈IReset(c′) :: c, VEnv(vs) :: s, d〉 ⇒ 〈c′, [VEnv(vs)], (c, s) :: d〉

〈[], [v], []〉 ⇒ v
〈[], [v], (c, s) :: d〉 ⇒ 〈c, v :: s, d〉

Figure 12. The obtained virtual machine

This transformation is an instance of defunctionalization and is
correct.

6. Discussion
Because all the calls in run_d11 and run_c11 are tail calls, they
can be directly converted to a virtual machine. Figure 12 shows
the final virtual machine we obtained in this paper, after inlining
run_d11 into run_c11. In addition to the standard calling conven-
tion (i.e., saving and restoring return addresses and values of live
variables), it precisely specifies the behavior of stack copying at
continuation capture and invocation. When a context is delimited
(see the behavior of IReset in Figure 12), the next instruction c (=
the current continuation) and the current data stack s are pushed on
a dump and the current data stack is cleared. When a continuation
is captured (via IShift), the next instruction c and the current data
stack s are copied to the heap, the current data stack is cleared, and
the body c′ of shift is executed. When the captured continuation
is invoked, the next instruction c and the current data stack s are
pushed on a dump and the saved continuation and the data stack
are restored.

Figure 12 shows more than that. Remember that a dump d is
a list of (c, s), and c is a code pointer (the return address for the
evaluation of the current context). Thus, the top of a dump holds
a return address. This validates the invariant we presented in the
previous work [20] to implement delimited continuations: a return
address and a reset pointer always reside immediately under the
current data stack.

Readers may think that copying a data stack s for every reset and
continuation invocation is not realistic. This can be easily avoided,
if we regard a data stack s and a dump d as a single stack. Assume
that d has the form [(c1, s1); . . . ; (cn, sn)]. If we know the length
of each data stack si, we can simply expand a data stack s and a
dump d as a single stack:

s@VK(c1)@s1@ . . . @VK(cn)@sn

Then, resetting the current context amounts to simply pushing
the current c (without copying s), and the continuation invocation
amounts to copying the saved data stack s′ (without copying s). The
length of each data stack can be remembered by pushing a pointer
to the end of the current data stack. Thus, the virtual machine even
explains the need for a reset pointer!

7. Conclusion
In this paper, we have connected the definitional interpreter for
the λ-calculus with shift and reset with a compiler and a low-level
stack-copying virtual machine. The obtained virtual machine ex-
plains and certifies a number of implementation techniques for
delimited continuations. The derivation process is not actually

straightforward: we sometimes have to imagine the result of pro-
gram transformation and what it means. However, the functional
derivation approach surely provides us with the guidance as to
which ways we can go and explore. Furthermore, connection via
simple program transformation appears to suggest the meaning of
various implementation techniques in a succinct way.

Acknowledgments
We received valuable comments and suggestions from Olivier
Danvy as well as anonymous reviewers; they improved the paper
in various ways.

References
[1] Ager, M. S., D. Biernacki, O. Danvy, and J. Midtgaard “From

Interpreter to Compiler and Virtual Machine: A Functional
Derivation,” BRICS Research Report RS-03-14, Department
of Computer Science, Aarhus University, 36 pages (March
2003).

[2] Ager, M. S., D. Biernacki, O. Danvy, and J. Midtgaard “A
functional correspondence between evaluators and abstract
machines,” Proceedings of the 5th ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative
Programming (PPDP’03), pp. 8–19 (September 2003).

[3] Asai, K. “Logical Relations for Call-by-value Delimited Con-
tinuations,” Trends in Functional Programming (TFP 2005),
Vol. 6, pp. 63–78, Intellect (2007).

[4] Asai, K. “On Typing Delimited Continuations: Three New
Solutions to the Printf Problem,” Higher-Order and Symbolic
Computation, Vol. 22, No. 3, pp. 275–291, Kluwer Academic
Publishers (September 2009).

[5] Banerjee, A., N. Heintze, and J. G. Riecke “Design and Cor-
rectness of Program Transformations Based on Control-Flow
Analysis,” In N. Kobayashi and B. C. Pierce, editors, Theoret-
ical Aspects of Computer Software (LNCS 2215), pp. 420–447
(October 2001).

[6] Biernacka, M., D. Biernacki, and O. Danvy “An Operational
Foundation for Delimited Continuations in the CPS Hierar-
chy,” Logical Methods in Computer Science, Vol. 1, No. 2:5,
pp. 1–39 (November 2005).

[7] Danvy, O. “A Rational Deconstruction of Landin’s SECD Ma-
chine,” In C. Grelck, F. Huch, G. J. Michaelson, and P. Trinder,
editors, Implementation and Application of Functional Lan-
guages (LNCS 3474), pp. 52–71 (September 2004).

[8] Danvy, O. “Defunctionalized interpreters for programming
languages,” Proceedings of the 13th ACM SIGPLAN Inter-

96

national Conference on Functional Programming (ICFP’08),
pp. 131–142 (September 2008).

[9] Danvy, O., and A. Filinski “Abstracting Control,” Proceedings
of the 1990 ACM Conference on Lisp and Functional Pro-
gramming, pp. 151–160 (June 1990).

[10] Danvy, O., K. Millikin “Refunctionalization at Work,” Science
of Computer Programming, Vol. 74, No. 8, pp. 534–549, El-
sevier (June 2008).

[11] Danvy, O., K. Millikin “A Rational Deconstruction of
Landin’s SECD Machine with the J Operator,” Logical Meth-
ods in Computer Science, Vol. 4, No. 4:12, pp. 1–67 (Novem-
ber 2008).

[12] Dybvig, R. K., S. L. Peyton Jones, and A. Sabry “A Monadic
Framework for Delimited Continuations,” Journal of Func-
tional Programming, Vol. 17, No. 6, pp. 687–730, Cambridge
University Press (November 2007).

[13] Gasbichler, M., and M. Sperber “Final Shift for Call/cc: Di-
rect Implementation of Shift and Reset,” Proceedings of the
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’02), pp. 271–282 (October 2002).

[14] Igarashi, A., and M. Iwaki “Deriving Compilers and Vir-
tual Machines for a Multi-Level Language,” Proceedings of
the Fifth Asian Symposium on Programming Languages and
Systems (APLAS’07), LNCS 4807, pp. 206–221 (November
2007).

[15] Jones, N. D., C. K. Gomard, and P. Sestoft Partial Evaluation
and Automatic Program Generation, New York: Prentice-Hall
(1993).

[16] Kameyama, Y., O. Kiselyov, and C. C. Shan “Shifting the
Stage: Staging with Delimited Control,” ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’09), pp. 111–120 (January 2009).

[17] Kiselyov, O. “Delimited Control in OCaml, Abstractly and
Concretely, System Description,” Proceedings of the Tenth
International Symposium on Functional and Logic Program-
ming (FLOPS 2010), to appear (April 2010).

[18] Landin, P. J. “The mechanical evaluation of expressions,” The
Computer Journal, Vol. 6, No. 4, pp. 308-320 (January 1964).

[19] Lawall, J. L., and O. Danvy “Continuation-Based Partial Eval-
uation,” Proceedings of the 1994 ACM Conference on Lisp
and Functional Programming, pp. 227–238 (June 1994).

[20] Masuko, M., and K. Asai “Direct Implementation of Shift
and Reset in the MinCaml Compiler,” Proceedings of the
2009 ACM SIGPLAN Workshop on ML, pp. 49–60 (September
2009).

[21] Nielsen, L. R. “A Denotational Investigation of Defunction-
alization,” BRICS Research Report RS-00-47, Department of
Computer Science, Aarhus University, 50 pages (December
2000).

[22] Plotkin, G. D. “Call-by-name, call-by-value, and the λ-
calculus,” Theoretical Computer Science, Vol. 1, No. 2,
pp. 125–159 (December 1975).

[23] Reynolds, J. C. “Definitional Interpreters for Higher-Order
Programming Languages,” Proceedings of the ACM National
Conference, Vol. 2, pp. 717–740, (August 1972), reprinted
in Higher-Order and Symbolic Computation, Vol. 11, No. 4,
pp. 363–397, Kluwer Academic Publishers (December 1998).

[24] Rompf, T., I. Maier, M. Odersky “Implementing First-Class
Polymorphic Delimited Continuations by a Type-Directed Se-
lective CPS-Transform,” Proceedings of the 14th ACM SIG-
PLAN International Conference on Functional Programming
(ICFP’09), pp. 317–328 (August 2009).

[25] Sumii, E. “MinCaml: A Simple and Efficient Compiler for
a Minimal Functional Language,” ACM SIGPLAN Workshop
on Functional and Declarative Programming in Education
(FDPE ’05), pp. 27–38 (September 2005).

[26] Sumii, E., and N. Kobayashi “A Hybrid Approach to Online
and Offline Partial Evaluation,” Higher-Order and Symbolic
Computation, Vol. 14, Nos. 2/3, pp. 101–142, Kluwer Aca-
demic Publishers (2001).

[27] Wand, M. “Semantics-Directed Machine Architecture,” Pro-
ceedings of the 9th ACM Symposium on Principles of Pro-
gramming Languages, pp. 234–241 (January 1982).

[28] Wand, M. “Loops in Combinator-Based Compilers,” Proceed-
ings of the 10th ACM Symposium on Principles of Program-
ming Languages, pp. 190–196 (January 1983).

97

