
Title Overview Stepper design Stepping modules Formalization Related work Summary

Algebraic Stepper for Simple Modules

Kenichi Asai and Hinano Akiyama

Ochanomizu University, Japan

January 21, 2025

http://pllab.is.ocha.ac.jp/~asai/Stepper/demo/

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 1/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Algebraic Stepper

A tool to show all the intermediate steps of program execution, like
a small-step semantics or algebraic calculation in math.

4 + 5× (3− 1)
= 4 + 5× 2
= 4 + 10
= 14

fac 5 →∗ 5 * fac 4 →∗ 5 * (4 * fac 3) →∗ 5 * (4 * (3 * fac 2)) →∗ · · ·

(λx. λy. x+ y) 3 4 → (λy. 3 + y) 4 → 3 + 4 → 7

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 2/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

OCaml Stepper
We implemented a stepper for OCaml and
use it in a functional programming course in
our university.

Supports most of the basic constructs of
OCaml (including recursion, records,
lists, exceptions, output, references).

Among the topics covered in the course,
modules were the only unsupported
feature.

Demo page or in Emacs (VS code
support in progress).

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 3/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Stepper ̸= Small-Step Semantics

Delayed substitution of variables

In a stepper, a variable is substituted to its value using one step
when it is used, not when it is declared.

Program:

let a = 10

let f x = a + x

let _ = f 100

Step execution:

f 100

→ a + 100

→ 10 + 100

→ 110

Small-step semantics:

let a = 10

let f x = 10 + x

let _ = (\x.10 + x) 100

(\x.10 + x) 100

→ 10 + 100

→ 110
Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 4/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Variables vs. Functions

We want a variable to be replaced with its value, but not a function.

Program:

let a = 10

let f x = a + x

let _ = f 100

We want:

f 100

→ a + 100

→ 10 + 100

→ 110

But not:

f 100

→ (\x.a + x) 100

→ a + 100

→ 10 + 100

→ 110

A constant variable is a redex, a function variable is not.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 5/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Variable Annotations

Once declared, variables are annotated with their levels and values .

Users see:

let a = 10

let f x = a + x

let _ = f 100

f 100

→ a + 100

→ 10 + 100

→ 110

Internal representation:

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x.a[@0][@10] + x] 100

f [@0] [@\x.a[@0][@10] + x] 100

→ a [@0] [@10] + 100

→ 10 + 100

→ 110
Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 6/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Design Choice: Allow Apparent Name Clashes

Users see:

let a = 10

let f x = a + x

let a = 20

let _ = f 100

f 100

→ a + 100

→ 10 + 100

→ 110

Internal representation:

let a = 10

let f x = a [@0] [@10] + x

let a = 20

let _ = f [@0] [@\x.a[@0][@10] + x] 100

f [@0] [@\x.a[@0][@10] + x] 100

→ a [@0] [@10] + 100

→ 10 + 100

→ 110

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 7/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

OCaml Modules
let a = 10

let f x = a + x

let _ = f 100

module X = struct

let a = 20

let g x = f x + a

let _ = g 200

end

let _ = X.g 300

A program: a tree of static modules

A module can contain type,
variable, and module declarations.

They are evaluated once in the
order of appearance.

Variable reference:

A variable in the parent module
can be accessed directly.

Access to a variable in a child
module requires a module path.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 8/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Propagating Values of Variables into Modules

let a = 10

let f x = a + x

let _ = f 100

module X = struct

let a = 20

let g x = f x + a

let _ = g 200

end

Values of variables are annotated in the rest of the program.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 9/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f 100

module X = struct

let a = 20

let g x = f x + a

let _ = g 200

end

Values of variables are annotated in the rest of the program.

When a variables is shadowed, substitution stops.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 9/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x. a[@0][@10] + x] 100

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a

let _ = g 200

end

Values of functions are also annotated in the rest of the prog.

Levels increase by 1 when entering a module.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 9/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x. a[@0][@10] + x] 100

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

let _ = g 200

end

Variables in attributes are not affected.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 9/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x. a[@0][@10] + x] 100

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

let _ = g [@0] [@\x. f[@1][@...] x + a[@0][@20]] 200

end

→ f[@1][@\x. a[@1][@10] + x] 200 + a[@0][@20]

→ f[@1][@\x. a[@1][@10] + x] 200 + 20

→ (a[@1][@10] + 200) + 20

→ (10 + 200) + 20
Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 9/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Substitution of Modules

let a = 10

let f x = a [@0] [@10] + x

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

end

let _ = X.g 300

When a module is evaluated, its information is propagated to
the rest of the program.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 10/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Substitution of Modules

let a = 10

let f x = a [@0] [@10] + x

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

end

let _ = X.g [@0] [@\x. f[@0][@\x. a[@0][@10] + x] x

+ X.a[@0][@20]] 300

Levels decrease by 1.

When levels are already 0, module path is attached.
Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 10/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Formalization (Stepper and Small-Step Semantics)

Syntax:

module path p ::= ϵ | X.p

value v ::= c | p.x | λz. e | p.g[@n][@λz. e]

expression e ::= v | e0 e1 | p.x[@n][@c]

structure item i ::= let x = e | module X = struct s end
structure s ::= [] | i :: s

Stepper Only

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 11/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Reduction Rules (for Expressions)

(λz. e) v → e[v/z]e

p.x[@n][@c] → c
p.g[@n][@λz. e] v → e[v/z]e

e1 → e2
E[e1] → E[e2]

Stepper Only

let a = 10

let f x = a + x

let _ = f 100

f 100

→ a + 100

→ 10 + 100

→ 110

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 12/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Evaluation Rules (for Modules)

s1 ⇝ s2
S[s1]⇝ S[s2]

e1 → e2
(let x = e1) :: s⇝ (let x = e2) :: s

(let x = v) :: s

⇝ {let x = v} :: s[x[@0][@v]/x]s s[v/x]s
(module X = struct r end) :: s

⇝ {module X = struct r end} :: s[lifts(X, r)/X]0
s
s[r/X]0

s

Stepper Only Small-Step Semantics Only

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 13/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Property

Define the erasure | e | of e by replacing all the annotated variables
with their values, i.e., applying | p.x[@n][@c] | = c to all the
subexpressions.

Theorem
1 If e1 → e2 in the stepper semantics, | e1 | →∗ | e2 | in the

standard semantics.
2 If s1 ⇝ s2 in the stepper semantics, | s1 |⇝∗ | s2 | in the

standard semantics.

Note: since | e | removes variable names, the theorem says nothing
about whether the used variable names are correct.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 14/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Related Work

Stepper:

Clements et al. 2001 (Scheme)

Whitington, Ridge 2017 (OCaml)

OCaml stepper from our group:

Cong and Asai 2016 (original design)

Furukawa, Cong, and Asai 2018 (exception)

Akiyama and Asai 2023 (references)

Modules:

Many papers on typing for advanced features

A few small-step semantics, e.g., Crary 2019
Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 15/16

Title Overview Stepper design Stepping modules Formalization Related work Summary

Current Status and Summary

Implemented for OCaml 4.14.2 (last version before OCaml 5).

Used in a functional programming course in our university.

Stepper ̸= small-step semantics

... because of the delayed substitution of variables

Future work:

Algebraic effects for OCaml 5?

Functors?

Signature sealing...? — not likely.

Kenichi Asai and Hinano Akiyama Algebraic Stepper for Simple Modules 16/16

	Title
	Overview
	Stepper design
	Stepping modules
	Formalization
	Related work
	Summary

