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Algebraic Stepper

A tool to show all the intermediate steps of program execution, like
a small-step semantics or algebraic calculation in math.

4 + 5× (3− 1)
= 4 + 5× 2
= 4 + 10
= 14

fac 5 →∗ 5 * fac 4 →∗ 5 * (4 * fac 3) →∗ 5 * (4 * (3 * fac 2)) →∗ · · ·

(λx. λy. x+ y) 3 4 → (λy. 3 + y) 4 → 3 + 4 → 7
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OCaml Stepper
We implemented a stepper for OCaml and
use it in a functional programming course in
our university.

Supports most of the basic constructs of
OCaml (including recursion, records,
lists, exceptions, output, references).

Among the topics covered in the course,
modules were the only unsupported
feature.

Demo page or in Emacs (VS code
support in progress).
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Stepper ̸= Small-Step Semantics

Delayed substitution of variables

In a stepper, a variable is substituted to its value using one step
when it is used, not when it is declared.

Program:

let a = 10

let f x = a + x

let _ = f 100

Step execution:

f 100

→ a + 100

→ 10 + 100

→ 110

Small-step semantics:

let a = 10

let f x = 10 + x

let _ = (\x.10 + x) 100

(\x.10 + x) 100

→ 10 + 100

→ 110
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Variables vs. Functions

We want a variable to be replaced with its value, but not a function.

Program:

let a = 10

let f x = a + x

let _ = f 100

We want:

f 100

→ a + 100

→ 10 + 100

→ 110

But not:

f 100

→ (\x.a + x) 100

→ a + 100

→ 10 + 100

→ 110

A constant variable is a redex, a function variable is not.
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Variable Annotations

Once declared, variables are annotated with their levels and values .

Users see:

let a = 10

let f x = a + x

let _ = f 100

f 100

→ a + 100

→ 10 + 100

→ 110

Internal representation:

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x.a[@0][@10] + x] 100

f [@0] [@\x.a[@0][@10] + x] 100

→ a [@0] [@10] + 100

→ 10 + 100

→ 110
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Design Choice: Allow Apparent Name Clashes

Users see:

let a = 10

let f x = a + x

let a = 20

let _ = f 100

f 100

→ a + 100

→ 10 + 100

→ 110

Internal representation:

let a = 10

let f x = a [@0] [@10] + x

let a = 20

let _ = f [@0] [@\x.a[@0][@10] + x] 100

f [@0] [@\x.a[@0][@10] + x] 100

→ a [@0] [@10] + 100

→ 10 + 100

→ 110
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OCaml Modules
let a = 10

let f x = a + x

let _ = f 100

module X = struct

let a = 20

let g x = f x + a

let _ = g 200

end

let _ = X.g 300

A program: a tree of static modules

A module can contain type,
variable, and module declarations.

They are evaluated once in the
order of appearance.

Variable reference:

A variable in the parent module
can be accessed directly.

Access to a variable in a child
module requires a module path.
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Propagating Values of Variables into Modules

let a = 10

let f x = a + x

let _ = f 100

module X = struct

let a = 20

let g x = f x + a

let _ = g 200

end

Values of variables are annotated in the rest of the program.
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Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f 100

module X = struct

let a = 20

let g x = f x + a

let _ = g 200

end

Values of variables are annotated in the rest of the program.

When a variables is shadowed, substitution stops.
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Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x. a[@0][@10] + x] 100

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a

let _ = g 200

end

Values of functions are also annotated in the rest of the prog.

Levels increase by 1 when entering a module.
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Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x. a[@0][@10] + x] 100

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

let _ = g 200

end

Variables in attributes are not affected.
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Propagating Values of Variables into Modules

let a = 10

let f x = a [@0] [@10] + x

let _ = f [@0] [@\x. a[@0][@10] + x] 100

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

let _ = g [@0] [@\x. f[@1][@...] x + a[@0][@20]] 200

end

→ f[@1][@\x. a[@1][@10] + x] 200 + a[@0][@20]

→ f[@1][@\x. a[@1][@10] + x] 200 + 20

→ (a[@1][@10] + 200) + 20

→ (10 + 200) + 20
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Substitution of Modules

let a = 10

let f x = a [@0] [@10] + x

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

end

let _ = X.g 300

When a module is evaluated, its information is propagated to
the rest of the program.
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Substitution of Modules

let a = 10

let f x = a [@0] [@10] + x

module X = struct

let a = 20

let g x = f [@1] [@\x. a[@1][@10] + x] x + a [@0] [@20]

end

let _ = X.g [@0] [@\x. f[@0][@\x. a[@0][@10] + x] x

+ X.a[@0][@20]] 300

Levels decrease by 1.

When levels are already 0, module path is attached.
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Formalization (Stepper and Small-Step Semantics)

Syntax:

module path p ::= ϵ | X.p

value v ::= c | p.x | λz. e | p.g[@n][@λz. e]

expression e ::= v | e0 e1 | p.x[@n][@c]

structure item i ::= let x = e | module X = struct s end
structure s ::= [ ] | i :: s

Stepper Only
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Reduction Rules (for Expressions)

(λz. e) v → e[v/z]e

p.x[@n][@c] → c
p.g[@n][@λz. e] v → e[v/z]e

e1 → e2
E[e1] → E[e2]

Stepper Only

let a = 10

let f x = a + x

let _ = f 100

f 100

→ a + 100

→ 10 + 100

→ 110
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Evaluation Rules (for Modules)

s1 ⇝ s2
S[s1]⇝ S[s2]

e1 → e2
(let x = e1) :: s⇝ (let x = e2) :: s

(let x = v) :: s

⇝ {let x = v} :: s[x[@0][@v]/x]s s[v/x]s
(module X = struct r end) :: s

⇝ {module X = struct r end} :: s[lifts(X, r)/X]0
s
s[r/X]0

s

Stepper Only Small-Step Semantics Only
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Property

Define the erasure | e | of e by replacing all the annotated variables
with their values, i.e., applying | p.x[@n][@c] | = c to all the
subexpressions.

Theorem
1 If e1 → e2 in the stepper semantics, | e1 | →∗ | e2 | in the

standard semantics.
2 If s1 ⇝ s2 in the stepper semantics, | s1 |⇝∗ | s2 | in the

standard semantics.

Note: since | e | removes variable names, the theorem says nothing
about whether the used variable names are correct.
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Related Work

Stepper:

Clements et al. 2001 (Scheme)

Whitington, Ridge 2017 (OCaml)

OCaml stepper from our group:

Cong and Asai 2016 (original design)

Furukawa, Cong, and Asai 2018 (exception)

Akiyama and Asai 2023 (references)

Modules:

Many papers on typing for advanced features

A few small-step semantics, e.g., Crary 2019
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Current Status and Summary

Implemented for OCaml 4.14.2 (last version before OCaml 5).

Used in a functional programming course in our university.

Stepper ̸= small-step semantics

... because of the delayed substitution of variables

Future work:

Algebraic effects for OCaml 5?

Functors?

Signature sealing...? — not likely.
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