
On Typing Delimited Continuations:

Three New Solutions to the Printf Problem

Kenichi Asai
Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

http://pllab.is.ocha.ac.jp/˜asai

Abstract

In “Functional Unparsing” (JFP 8(6):621-625, 1998), Danvy presented a type-safe printf
function using continuations and an accumulator to achieve the effect of dependent types. The
key technique employed in Danvy’s solution is the non-standard use of continuations: not all of
its calls are tail calls, i.e., it uses delimited continuations. Against this backdrop, we present
three new solutions to the printf problem: a simpler one that also uses delimited continua-
tions but that does not use an accumulator, and the corresponding two in direct style with the
delimited-control operators, shift and reset. These two solutions are the direct-style coun-
terparts of the two continuation-based ones. The last solution pinpoints the essence of Danvy’s
solution: shift is used to change the answer type of delimited continuations. Besides providing
a new application of shift and reset, the solutions in direct style raise a key issue in the typing
of first-class delimited continuations and require Danvy and Filinski’s original type system. The
resulting types precisely account for the behavior of printf.

Keywords Printf, Delimited Continuations, Continuation-Passing Style (CPS), Direct Style,
Types

1 Background and Introduction

Over the last decade, type-indexed functions have often been illustrated with a printf-like function,
which takes a formatting directive and several arguments to format and returns a formatted string.
Typing this function appears to require dependent types, because the types of the arguments to the
function vary according to the formatting directive. Contrary to this intuition, Danvy [2] showed
that printf can be expressed within the ML type system, without using dependent types. This
example has proved popular. For example: Yang [10] showed how to encode types in ML-like
languages; Fridlender and Indrika [6] demonstrated how to define a general zipWith function in
Haskell; Xi, Chen, and Chen [9] showed an implementation based on guarded recursive datatype
constructors; Hinze [7] presented how to define generic functions on types within the Haskell type
system; and Oliveira and Gibbons [1] generalized these techniques as a design pattern.

The key technique employed in Danvy’s solution is the non-standard use of continuations. He
achieves the dependent behavior of printf by modifying the return type of continuations according to
the given pattern directives. Since the technique mentions continuations, the solution requires to be
written either by passing continuations or with first-class continuation constructs. Danvy’s original
solution takes the first approach. The present article explores both approaches: we show another
continuation-based solution and two more solutions in direct style with delimited continuation

1

operators, shift and reset. The solutions turn out to pinpoint the essence of Danvy’s solution.
In particular, the final direct-style solution is so concise that it is almost trivial except for one
function where shift is used to achieve the dependent behavior of printf.

The direct-style solutions raise an interesting issue in the typing of delimited continuation
constructs. They do not type check if we use Filinski’s implementation [5] of shift and reset. We
show that they are typable with the original type system by Danvy and Filinski [3], and that their
type precisely accounts for the dependent behavior of printf. The type system therefore provides
an accurate abstraction of the behavior of printf and of its control effects.

After describing the printf problem in the next section, we review Danvy’s solution in Section 3.
We then present the first direct-style solution in Section 4. Section 5 demonstrates that it does not
type check with Filinski’s implementation of delimited continuations in ML, and Section 6 shows
that it does with Danvy and Filinski’s original type system. In Section 7, we simplify Danvy’s
solution by eliminating the accumulator to obtain another continuation-based solution. Applying
the same simplification to the direct-style solution yields the second and extremely simple solution
in direct style in Section 8. The article concludes in Section 9. The four solutions in the paper are
summarized in Table 1.

Table 1: Four Solutions to the Printf Problem

Accumulator No Accumulator
Continuation-based Section 3 Section 7
Direct Style with shift and reset Section 4 Section 8

2 Problem Specification

The printf problem is specified as follows. Assume that the formatting string consists of the
following pattern directives:

• lit for literal strings,

• eol for newlines, and

• a field type specifier % for input field arguments that accepts one of the following representa-
tions of types:

– int for integers, or

– str for strings.

The goal of the printf problem is to write a function sprintf together with the above pattern
directives and type representations in a type-safe manner. For example, assuming that ++ is an
infix operator that connects pattern directives,

sprintf (lit "Hello world!" ++ eol)

should have type string,

sprintf (lit "Hello " ++ % str ++ lit "!" ++ eol)

2

should have type string -> string, and

sprintf (lit "The value of " ++ % str ++ lit " is " ++ % int ++ eol)

should have type string -> int -> string. The return type of sprintf therefore depends on
the given pattern.

3 Continuation-based Solution

Danvy’s continuation-based solution [2] involves two techniques. First, it encodes all the necessary
information into pattern directives, not in the sprintf function itself. Second, it uses continuations
in a non-standard way to change the return type of sprintf according to the given pattern. Let
us review Danvy’s solution re-written in OCaml:

(* lit : string -> (string -> ’a) -> string -> ’a *)
let lit x k s = k (s ^ x)

(* eol : (string -> ’a) -> string -> ’a *)
let eol k s = k (s ^ "\n")

lit x and eol are not encoded as strings but as string transformers written in continuation-
passing style (CPS). They both receive a continuation k and a string s and pass their results to
k. Accordingly, two patterns cannot be connected using a string concatenation operator ^, but are
connected using function composition (i.e., not in CPS):

(* (++) : (’b -> ’a) -> (’c -> ’b) -> ’c -> ’a *)
let (++) f1 f2 x = f1 (f2 x)

Forgetting about % for now, sprintf can be defined by passing the initial continuation (the identity
function) and the initial string (the empty string) to the pattern:

(* sprintf : ((string -> string) -> string -> ’a) -> ’a *)
let sprintf p = p (fun (s : string) -> s) ""

sprintf (lit "Hello world!" ++ eol);;
- : string = "Hello world!\n"
#

Now, the remaining task is to define %, int, and str. Let us define int and str as functions that
return the string representation of their inputs:

(* int : int -> string *)
let int x = string_of_int x

(* str : string -> string *)
let str (x : string) = x

The definitions of the above two functions remain the same throughout the four solutions in this
article.

Then, the field type specifier % can be defined as follows:1

1The identifier % cannot be actually used because it is an infix symbol in OCaml. One has to use either (%) or
other prefix identifier instead. In this article, we simply assume it is a prefix symbol.

3

(* % : (’b -> string) -> (string -> ’a) -> string -> ’b -> ’a *)
let % to_str k s = fun x -> k (s ^ to_str x)

Given a field type to_str (either int or str), a continuation k, and a string s, % does not return
a string but a function that receives an additional argument x. It then concatenates its string
representation to s and passes the result to k. Notice that the above definition of % does not
conform to the proper continuation-passing style. The continuation k is not applied in tail position,
but within a function. It is this non-standard use of continuations that changes the return type
of sprintf. The construction of the output string for all the directives finishes once the string
(s ^ to_str x) is passed to k. By wrapping it into an abstraction fun x ->, the return value of
sprintf changes from a string to a function, thus making it possible to accept another argument.

Using %, we have:

sprintf (lit "Hello " ++ % str ++ lit "!" ++ eol);;
- : string -> string = <fun>
sprintf (lit "Hello " ++ % str ++ lit "!" ++ eol) "world";;
- : string = "Hello world!\n"
#

Multiple uses of % change the return type further to accept yet another argument:

sprintf (lit "The value of " ++ % str ++ lit " is " ++ % int ++
eol);;

- : string -> int -> string = <fun>
sprintf (lit "The value of " ++ % str ++ lit " is " ++ % int ++

eol) "x" 3;;
- : string = "The value of x is 3\n"
#

4 Solution in Direct Style

Although elegant, the continuation-based solution suffers from the common problem of CPS pro-
grams: every function has to pass continuations. Since the cleverness of the solution is encoded into
continuations that are scattered around all over the functions, it may give the wrong impression
that passing continuations is the essence of the solution.

A closer look at the continuation-based solution, however, reveals that the only non-standard
use of continuations occurs in the definition of %. This calls for the use of continuation-manipulation
operations: they would get rid of continuations altogether except for %, thus highlighting the essence
of the solution. Here, we use shift and reset, which were introduced by Danvy and Filinski
[4], to manipulate delimited continuations in a way compatible with continuation-passing style:
shift is like call-with-current-continuation in Scheme (or callcc in ML) but it captures the
continuation only up to its enclosing reset.

Let us write sprintf in direct style now. We start from lit and eol. They are string trans-
formers as before, but now written without continuations:

(* lit : string -> string -> string *)
let lit x s = s ^ x

(* eol : string -> string *)
let eol s = s ^ "\n"

4

The definitions of int and str as well as ++ remain the same. The interesting part is the definition
of %. Omitting the typing information for now, it is defined as follows:

let % to_str s = shift (fun k -> fun x -> k (s ^ to_str x))

Given a field type to_str (either int or str as before) and a string s, % captures its current
continuation, binds it to k, and returns a function. When the function is applied to an argument
of the designated type, it concatenates the string representation of that argument to s and passes
the result to k. Observe this non-standard use of the captured continuation again. As in the
continuation-based solution, the continuation k is not applied in tail position, but within a function.
The construction of the output string finishes once the string (s ^ to_str x) is passed to k. By
wrapping it into an abstraction fun x ->, the type of whole the expression changes from a string
to a function, making it possible to accept another argument.

It is easy to see the correspondence between the previous continuation-based solution and this
solution: CPS-transforming the latter yields the former. This new solution shows clearly that
continuation passing is not necessary to achieve the dependent behavior of printf. Instead, it
exemplifies the non-standard use of continuations that modifies the answer type, which is the
crucial point of the solution.

Since % uses shift, we need to delimit the continuation when we invoke sprintf:

let sprintf p = reset (fun () -> p "")

It corresponds to passing the initial continuation in Danvy’s solution.
We could now write:

sprintf (lit "Hello world!" ++ eol)
sprintf (lit "Hello " ++ % str ++ lit "!" ++ eol) "world"
sprintf (lit "The value of " ++ % str ++ lit " is " ++ % int ++ eol) "x" 3

to obtain "Hello world!\n" for the first two and "The value of x is 3\n" for the last.
The above program actually runs if we ignore the typing issue. In fact, the author has imple-

mented it in Scheme and confirmed that the expected results are obtained. However, it turns out
that the above program does not type check if we use the available implementation [5] of shift
and reset using callcc in ML. We address this typing issue in the following two sections.

5 Typing the Direct-Style Solution

We now see how functions in the direct-style solution could be typed. The types of int, str, and ++
are already shown in Section 3 and remain the same. The types of eol and lit for the direct-style
solution are presented in Section 4.

Now, what about %?

let % to_str s = shift (fun k -> fun x -> k (s ^ to_str x))

To type %, we first observe that k has a type string -> ’a for some ’a representing the answer
type. Since % to_str is a string transformer and thus % to_str s is expected to be a string,
string -> ’a is the right type for its continuation. Knowing that k has this type, the type of the
body of shift (that is, fun x -> k (s ^ to_str x)) becomes ’b -> ’a where ’b is the type of
x. Now, what is the type of the final answer? Before the continuation was grabbed, it was assumed

5

to be ’a. After the capture, however, it became ’b -> ’a. In other words, the final answer type
changed.

This is where a type conflict occurs if we use Filinski’s implementation of shift and reset in
terms of callcc. This implementation requires that the type of the final answer be chosen first
and fixed throughout afterwards.

6 Danvy and Filinski’s Type System

The problem of typing sprintf arises because we required the final answer type and the return
type of continuations to be the same. Although this appears to be natural for the type system
like the one for ML, the original type system for delimited continuations introduced by Danvy and
Filinski [3] does not have this restriction but allows any expression to alter them. It uses a function
type of the form S / A -> T / B, which is the type of a function from S to T that changes the final
answer type from A to B when applied. The conventional function type S -> T in the type system
is considered as polymorphic in the answer type: S / ’p -> T / ’p for a new type variable ’p.
Since it does not change the answer type, it is called control-effect free or pure [8].

Using this type system, the definition of % does type check as follows:

(* % : (’b -> string) -> (string / ’a -> string / (’b -> ’a)) *)
let % to_str s = shift (fun k -> fun x -> k (s ^ to_str x))

Given to_str of type ’b -> string, it produces a string transformer of type string / ’a ->
string / (’b -> ’a). This type indicates that the string transformer receives a string and pro-
duces a string. During this process, however, it alters the answer type from ’a to ’b -> ’a,
allowing to accept another argument of type ’b. Notice how the above type exactly describes the
behavior of %.

For completeness, we show the type of sprintf:

(* sprintf : (string / string -> string / ’a) -> ’a *)
let sprintf p = reset (fun () -> p "")

The type of sprintf is interesting. It receives a pattern of the type string / string -> string
/ ’a. It is a function from string to string, but it changes the return type from string to an
arbitrary ’a. Then, sprintf will return a value of this ’a. In other words, the return type of
sprintf is determined by, or dependent on, the final answer type of its argument. This is how the
dependent behavior of printf is realized from the perspective of types.

Notice that the function sprintf itself does not change the answer type. This is observed by
the fact that the outermost -> is pure. Even though the pattern contains % and manipulates its
continuations, control effects do not leak out of sprintf. Thus, we can consider sprintf as a pure
function without any control effects.

7 Another Continuation-Based Solution

Looking at the two solutions obtained so far, it becomes clear that they are both written in an
accumulator-passing style: by encoding pattern directives as string transformers, all the pattern
directives receive a string as an accumulator and add a string to it. However, since the dependent
behavior of printf is realized by the non-standard use of continuations, we do not really have to

6

write a solution in accumulator-passing style. In this section, we show another continuation-based
solution according to this observation.

Without an accumulator, the CPS version of lit x and eol are defined as follows:

(* lit : string -> (string -> ’a) -> ’a *)
let lit x k = k x

(* eol : (string -> ’a) -> ’a *)
let eol k = k "\n"

Since they are no longer string transformers, we cannot reuse function composition but have to
define ++ as a CPS function that concatenates two strings:

(* (++) : ((string -> ’b) -> ’a) ->
((string -> ’c) -> ’b) ->
((string -> ’c) -> ’a) *)

let (++) f1 f2 k = f1 (fun x -> f2 (fun y -> k (x ^ y)))

Then, % can be defined as follows:

(* % : (’b -> string) -> (string -> ’a) -> ’b -> ’a *)
let % to_str k = fun x -> k (to_str x)

The technique used here is again the same: by wrapping k (to_str x) with a function, the answer
type is changed from ’a to ’b -> ’a. This behavior is obtainable without an accumulator.

Finally, sprintf is defined as a function that passes the initial continuation to the given pattern
directive:

(* sprintf : ((string -> string) -> ’a) -> ’a *)
let sprintf p = p (fun (s : string) -> s)

8 Another Solution in Direct Style

By analyzing Danvy’s solution, we have seen that it is continuation-based and uses an accumulator.
In Section 4, we have removed continuation-passing to obtain a solution in direct style with an
accumulator. In the previous section, we have removed an accumulator to obtain the second
continuation-based solution. A natural question to ask, then, is what happens if we remove them
both.

In this section, we present a final solution that is written in direct style without using an
accumulator. Since it uses neither continuation- nor accumulator-passing, we do not have to encode
pattern directives at all. As a result, the solution becomes particularly simple and natural. Here
are the definitions of lit and eol:

(* lit : string -> string *)
let lit x = x

(* eol : string *)
let eol = "\n"

In fact, we do not need to use lit but a raw string suffices. The same goes for ++:

7

(* (++) : string -> string -> string *)
let (++) s1 s2 = s1 ^ s2

We can use ^ directly instead of ++. This is in contrast to the previous three solutions, where we
had to encode pattern directives into an appropriate form.

The definitions of int and str remain the same. The essence of the solution is again in the
definition of %, where the final answer type changes from ’a to ’b -> ’a:

(* % : (’b -> string) / ’a -> string / (’b -> ’a) *)
let % to_str = shift (fun k -> fun x -> k (to_str x))

It is easy to see that this definition is the direct-style counterpart of the second continuation-based
solution, including its type. By now, the reader can easily figure out its behavior without any
further explanation. We only remark that since the final answer type changes from ’a to ’b ->
’a, % cannot be given a conventional ML type.

As a whole, this solution exactly pinpoints the essence of Danvy’s solution. All the functions
except for % are elementary. The dependent behavior of printf is solely achieved by the non-standard
use of continuations in % that modifies the answer type.

The solution now has shift as a top construct of % to_str, and therefore requires us to delimit
the context at the outset of sprintf before % to_str is executed. One way to do this is to wrap
the pattern in a thunk:

sprintf (fun () -> "Hello world!" ^ eol)
sprintf (fun () -> "Hello " ^ % str ^ "!" ^ eol) "world"
sprintf (fun () -> "The value of " ^ % str ^ " is " ^ % int ^ eol)

"x" 3

We can then define sprintf as follows:

(* sprintf : (unit / string -> string / ’a) -> ’a *)
let sprintf p = reset p

Alternatively, we could define sprintf p as a macro for reset (fun () -> p).
Once again, note that the type describes the behavior of sprintf accurately: sprintf receives

a thunk that modifies the answer type to an arbitrary ’a; the final type depends on this answer
type; and sprintf itself is pure since the outer -> is pure.

9 Conclusion

This article presented four solutions to the printf problem: two continuation-based solutions and
two direct-style solutions, each using or not using an accumulator. These solutions show that the
dependent behavior of printf is realized by the modification of the answer type.

The two direct-style solutions provide new examples of using delimited continuation constructs.
The use of shift and reset here appears to be natural because the desired behavior for the
directives is to change the behavior of its context, not the output string itself.

The solutions in direct style raised an interesting issue about typing programs with shift and
reset. They are not typable in the existing ML type system but require Danvy and Filinski’s
original type system. Although how to incorporate it into the existing ML type system is yet to
be seen, the type system seems to provide an accurate abstraction of control effects when these

8

are compatible with ordinary continuation-passing style. In fact, we have seen that the type of %
accounts for its behavior, much in the same way as conventional types account for the behavior of
pure functions.

Acknowledgements

I would like to thank Olivier Danvy for many valuable comments, suggestions, and encouragements.

References

[1] Bruno C. d. S. Oliveira and Jeremy Gibbons. TypeCase: a Design Pattern for Type-Indexed
Functions. In Haskell ’05: Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell,
pages 98–109, New York, September 2005. ACM Press.

[2] Olivier Danvy. Functional Unparsing. Journal of Functional Programming, 8(6):621–625,
November 1998.

[3] Olivier Danvy and Andrzej Filinski. A Functional Abstraction of Typed Contexts. Technical
Report 89/12, DIKU, University of Copenhagen, July 1989.

[4] Olivier Danvy and Andrzej Filinski. Abstracting Control. In LFP ’90: Proceedings of the 1990
ACM Conference on LISP and Functional Programming, pages 151–160, New York, June 1990.
ACM Press.

[5] Andrzej Filinski. Representing Monads. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 446–457, New York,
January 1994. ACM Press.

[6] Daniel Fridlender and Mia Indrika. Do we need dependent types? Journal of Functional
Programming, 10(4):409–415, July 2000.

[7] Ralf Hinze. Generics for the Masses. In ICFP ’04: Proceedings of the Ninth ACM SIGPLAN
International Conference on Functional Programming, pages 236–243, New York, September
2004. ACM Press.

[8] Hayo Thielecke. From Control Effects to Typed Continuation Passing. In POPL ’03: Pro-
ceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 139–149, New York, January 2003. ACM Press.

[9] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded Recursive Datatype Constructors. In
POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 224–235, New York, January 2003. ACM Press.

[10] Zhe Yang. Encoding Types in ML-like Languages. Theoretical Computer Science, 315(1):151–
190, 2004.

9

