Delimited Continuations for Everyone

Kenichi Asai
Ochanomizu University, Japan
September 28, 2017

Overview

Basics:
■ What are continuations?
■ What are delimited continuations?
Examples:
■ How to discard continuations: times
■ How to extract continuations: append
■ How to reorder continuations: take, A-normalize
■ How to wrap continuations: printf, state monad
Speculation:
■ Toward delimited continuations in theorem proving

Early papers on control operators

- Control/prompt
M. Felleisen [POPL 1988]
"The Theory and Practice of First-Class Prompts"
- Shift/reset
O. Danvy and A. Filinski [LFP 1990] "Abstracting Control"
O. Danvy and A. Filinski [MSCS 1992]
"Representing Control,
a Study of the CPS Transformation"

What are continuations?

Continuation

The rest of the computation.

- The current computation:
... inside []
■ The rest of the computation:
... outside []
For example: $3+[5 * 2]-1$.
■ The current computation: $5 * 2$
■ The current continuation: $3+[\cdot]-1$.
"Given a value for [•], add 3 to it and subtract 1 from the sum." i.e., fun $\mathrm{x}->3+\mathrm{x}-1$

What are continuations?

As computation proceeds, continuation changes.
$3+[5 * 2]-1$:
■ The current computation: $5 * 2$
■ The current continuation: $3+[\cdot]-1$.
$[3+10]-1$:
■ The current computation: $3+10$
■ The current continuation: [.] - 1 .
[13-1]:

- The current computation: 13-1

■ The current continuation: [•].

Examples

Identify the current expressions, continuations, and their types.

■ $5 *(2 * 3+3 * 4)$

2 (if 2 = 3 then "hello" else "hi")

- " world"

Examples

Identify the current expressions, continuations, and their types.

■ $5 *([2 * 3]+3 * 4)$

[2 * 3]:
$5 *([\cdot]+3 * 4):$
2 (if 2 = 3 then "hello" else "hi")

- " world"

Examples

Identify the current expressions, continuations, and their types.

■ $5 *([2 * 3]+3 * 4)$
[2 * 3] : int
$5 *([\cdot]+3 * 4):$ int ->
($\mathbf{2}$ (if 2 = 3 then "hello" else "hi")

- " world"

Examples

Identify the current expressions, continuations, and their types.

■ $5 *([2 * 3]+3 * 4)$
[2 * 3] : int
5 * ([•] + 3 * 4) : int -> int
■ (if 2 = 3 then "hello" else "hi")

- " world"

Examples

Identify the current expressions, continuations, and their types.
$15 *([2 * 3]+3 * 4)$
$\quad[2 * 3]:$ int
$5 *([\cdot]+3 * 4):$ int \rightarrow int

■ (if [2 = 3] then "hello" else "hi")

- " world"
[2 = 3]:
(if [•] ...) ~ " world":

Examples

Identify the current expressions, continuations, and their types.

■ $5 *([2 * 3]+3 * 4)$
[2 * 3] : int
$5 *([\cdot]+3 * 4):$ int -> int
[(if [2 = 3] then "hello" else "hi")

- " world"
[2 = 3] : bool
(if [•] ...) ~ " world": bool ->

Examples

Identify the current expressions, continuations, and their types.

■ $5 *([2 * 3]+3 * 4)$
[2 * 3] : int
$5 *([\cdot]+3 * 4):$ int -> int
■ (if [2 = 3] then "hello" else "hi")

- " world"
[2 = 3] : bool
(if [•] ...) ~ " world": bool -> string

What are delimited continuations?

Delimited Continuation

The rest of the computation up to the delimiter.

Syntax

```
reset (fun () -> M)
```

For example:

$$
\text { reset (fun () }->3+[5 * 2])-1
$$

■ The current computation: $5 * 2$
■ The current delimited continuation: $3+[\cdot]$.

Examples

Identify the delimited continuations, and their types.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)
$\underline{\square}$ reset (fun () -> if [2 = 3] then "hello" else "hi")

- " world"

Examples

Identify the delimited continuations, and their types.

■ 5 * reset (fun () -> [2 * 3] + 3 * 4)
[•] $+3 * 4$:
2 reset (fun () -> if $[2=3]$ then "hello" else "hi")

- " world"

Examples

Identify the delimited continuations, and their types.

■ 5 * reset (fun () -> [2 * 3] + 3 * 4)
[•] + 3* 4: int -> int
2 reset (fun () -> if [2 = 3] then "hello" else "hi")

- " world"

Examples

Identify the delimited continuations, and their types.

■ 5 * reset (fun () -> [2 * 3] + 3 * 4)
[•] + 3 * 4 : int -> int
$\underline{\square}$ reset (fun () -> if [2 = 3] then "hello" else "hi")

- " world"
if [•] then "hello" else "hi":

Examples

Identify the delimited continuations, and their types.

■ 5 * reset (fun () -> [2 * 3] + 3 * 4)
[•] + 3 * 4 : int -> int
\leq reset (fun () -> if [2 = 3] then "hello" else "hi")

- " world"
if [•] then "hello" else "hi":
bool -> string

shift

Syntax
 shift (fun k -> M)

- It clears the current continuation,

■ binds the cleared continuation to k , and
■ executes the body M in the empty context.
For example:
reset (fun () -> $3+[\operatorname{shift}(f u n k->M)]$) 1

We will see a number of examples today.

shift

Syntax
 shift (fun k -> M)

- It clears the current continuation,

■ binds the cleared continuation to k , and
■ executes the body M in the empty context.
For example:
reset (fun () -> $\quad[\operatorname{shift}(f u n k->M)]$ - 1

We will see a number of examples today.

shift

Syntax
 shift (fun k -> M)

- It clears the current continuation,
- binds the cleared continuation to k , and

■ executes the body M in the empty context.
For example:
reset (fun () -> [shift (fun k -> M)]) - 1 $\mathrm{k}=$ reset (fun () -> $3+[\cdot]$)

We will see a number of examples today.

shift

Syntax
 shift (fun k -> M)

- It clears the current continuation,

■ binds the cleared continuation to k , and
■ executes the body M in the empty context.
For example:
reset (fun () ->

$$
\mathrm{k}=\mathrm{reset}(\text { fun }()->3+[\cdot])
$$

We will see a number of examples today.

How to discard continuations

shift (fun _ -> M)

- Captured continuation is discarded.

■ The same as raising an exception.
For example:
reset (fun () -> $\left.3+\operatorname{shift}\left(f u n ~ _~->~ 2\right)\right) ~-~ 1 ~$
reset (fun () -> 2) - 1
$\mathrm{k}=$ reset (fun () -> $3+[\cdot]$)
2-1
1

Examples

Replace [•] with shift (fun _ -> M) for some M.
15 * reset (fun () -> [•] + 3 * 4)

■ reset (fun () ->
if [•] then "hello" else "hi")

- " world"

We need the type of the context to fill in the body.

Examples

Replace [•] with shift (fun _ -> M) for some M.

15 * reset (fun () -> [•] + 3 * 4) shift (fun _ -> ?)
\square reset (fun () -> if [•] then "hello" else "hi")
" " world"
shift (fun _ -> ?)
We need the type of the context to fill in the body.

Examples

Replace [•] with shift (fun _ -> M) for some M.
1 5 * reset (fun () -> [•] + 3 * 4) shift (fun _ -> 3)
~ 15
\square reset (fun () ->
if [•] then "hello" else "hi")
" " world"
shift (fun _ -> ?)
We need the type of the context to fill in the body.

Examples

Replace [•] with shift (fun _ -> M) for some M.
15 * reset (fun () -> [•] + 3 * 4) shift (fun _ -> 3)
~ 15
\square reset (fun () ->
if [•] then "hello" else "hi")
" " world"
shift (fun _ -> "chao") ~"chao world"
We need the type of the context to fill in the body.

times

The following function multiplies elements of a list:
(* times : int list -> int *)
let rec times lst = match lst with
[] -> 1
| 0 :: rest -> ???
| first :: rest -> first * times rest
Fill in the ??? so that calls like the following will return 0 without performing any multiplication.
reset (fun () -> times [1; 2; 0; 4])

Non-solution

(* times : int list -> int *)
let rec times lst = match lst with

$$
\text { [] } \rightarrow 1
$$

| 0 :: rest -> 0
| first :: rest -> first * times rest
It avoids traversing the rest of the list once 0 is found, but it still multiplies elements up to 0 .
times [1; 2; 0; 4]
-> 1 * times [2; 0; 4]
$->1 * 2 *$ times [0; 4]
-> 1 * 2 * 0

Solution: discard the continuation

(* times : int list => int *)
let rec times lst = match lst with
[] -> 1
0 :: rest -> shift (fun _ -> 0)
| first :: rest -> first * times rest
reset (fun () -> times [1; 2; 0; 4])
\rightarrow reset (fun () $->1 *$ times [2; 0; 4])
\rightarrow reset (fun () -> $1 * 2 *$ times [0; 4])
-> reset (fun () -> 0)
-> 0

How to extract continuations

shift (fun k -> k)

- Captured continuation is returned immediately.

For example: reset (fun () -> 3 + [...] - 1)
let $f=r e s e t(f u n() ~->~$

$$
3+\operatorname{shift}(f u n k->k)-1)
$$

How to extract continuations

shift (fun k -> k)

- Captured continuation is returned immediately.

For example: reset (fun () -> 3 + [...] - 1)
let $\mathrm{f}=$ reset (fun () ->
$3+\operatorname{shift}(f u n k->k)-1)$
-> let $f=r e s e t(f u n() ~->~$
shift (fun k -> k))

How to extract continuations

shift (fun k -> k)

■ Captured continuation is returned immediately.
For example: reset (fun () -> 3 + [...] - 1)
let $\mathrm{f}=$ reset (fun () ->
$3+\operatorname{shift}(f u n k->k)-1)$
-> let $f=r e s e t(f u n() ~->~$
shift (fun k -> k))
where $k=$ reset (fun () -> 3 + [...] - 1)

How to extract continuations

shift (fun k -> k)

Captured continuation is returned immediately.
For example: reset (fun () -> 3 + [...] - 1)
let $\mathrm{f}=$ reset (fun () ->
$3+\operatorname{shift}(f u n k->k)-1)$
-> let $f=r e s e t(f u n() ~->~$
where k = reset (fun () -> 3 + [...] - 1)
f 10
-> 12

Somewhat advanced example

Here is an identity function on a list:
(* id : 'a list -> 'a list *)
let rec id lst $=$ match lst with
[] -> [] (* A *)
| first :: rest -> first :: id rest
By modifying the line ($*$ A $*$), extract the continuation at ($*$ A $*$) when called as follows:
reset (fun () -> id [1; 2; 3])
What does the extracted continuation do?

Solution

(* id : 'a list -> 'a list *)
let rec id hst = match list with
[] -> shift (fun k -> k)
first :: rest -> first :: id rest
reset (fun () -> id [1; 2; 3])
-> reset (fun () -> 1 :: id [2; 3])
-> reset (fun () -> 1 :: 2 :: id [3])
-> reset (fun () -> 1 :: 2 :: 3 :: id [])

The captured cont. conses 3,2 , and 1 in this order.

Solution

\# let append123 =
reset (fun () -> id [1; 2; 3]) ; ;
append123 : int list => int list = <fun>
\# append123 [4; 5; 6] ;;

- : int list $=[1 ; 2 ; 3 ; 4 ; 5 ; 6]$
\# let append lst1 =
reset (fun () -> id lst1) ; ;
append : 'a list -> 'a list -> 'a list = <fun>
\# append $[1 ; 2 ; 3][4 ; 5 ; 6] ;$;
- : int list = [1; 2; 3; 4; 5; 6]

How to reorder continuations: take

Given a list and a number n, return the given list where the n-th element is moved to the front.
take $[0 ; 1 ; 2 ; 3 ; 4] 0=[0 ; 1 ; 2 ; 3 ; 4]$
take $[0 ; 1 ; 2 ; 3 ; 4] 3=[3 ; 0 ; 1 ; 2 ; 4]$
take $[0 ; 1 ; 2 ; 3 ; 4] 5=[0 ; 1 ; 2 ; 3 ; 4]$
Seemingly easy:

- The original list is almost reconstructed as is.

■ Only the designated element is moved.
but:
■ The n-th element might not exist.
■ When found, it must be carried over to the front.
type found_t = Found of int | NotFound
(* int list -> int -> found_t * int list *)
let rec loop list $\mathrm{n}=$ match list with
[] -> (NotFound, [])
| first :: rest ->
if $\mathrm{n}=0$ then (Found first, rest)
else let (found, l) = loop rest (n - 1) in (found, first : : l)
(* take : int list -> int -> int list *)
let take list $\mathrm{n}=$ match loop list n with
(NotFound, l) -> l
| (Found e, l) -> e :: l

Simpler solution

(* loop : 'a list => int => 'a list *)
let rec loop list $\mathrm{n}=$ match list with
[] -> []
first :: rest ->
if $\mathrm{n}=0$ then
shift (fun k -> first : : k rest) else first : : (loop rest (n - 1))
(* take : 'a list -> int -> 'a list *)
let take list $\mathrm{n}=$ reset (fun () -> loop list n)
take $[0 ; 1 ; 2 ; 3 ; 4] 3=[3 ; 0 ; 1 ; 2 ; 4]$

A-normalization

Given an (arithmetic) expression, return the same expression where subexpressions are uniquely named.
a - (b - c - d) becomes:
let e1 = b - c in
let e2 = e1 - d in
let e3 = a - e2 in e3

■ Each '-' expression is uniquely named using let.
■ When A-normalizer encounters b-c, it has to insert corresponding let expression at the beginning.

A-normalization

(* loop : expr_t => expr_t *)
let rec loop expr = match expr with
Var (x) -> Var (x)
Minus (e1, e2) ->
let nf 1 = loop el in
let $n f 2$ = loop en in
let $\mathrm{x}=$ gensym "e" in
shift (fun k ->
Let (x, Minus (nfl, nf 2), k (Var x)))
(* anf : expr_t -> expr_t *)
let anf expr = reset (fun () -> loop expr)

A-normalization: example execution

| Minus (e1, e2) ->
(reshown)
let $n f 1$ = loop el in
let nf 2 = loop en in
let $\mathrm{x}=$ gensym "e" in
shift (fun k ->
Let (x, Minus (nf, nf 2), k (Var x)))

$$
\langle\operatorname{loop} \llbracket \mathrm{a}-(\mathrm{b}-\mathrm{c}-\mathrm{d}) \rrbracket\rangle
$$

$\rightarrow\langle g(\operatorname{loop} \llbracket \mathrm{a} \rrbracket-\operatorname{loop} \llbracket \mathrm{b}-\mathrm{c}-\mathrm{d} \rrbracket)\rangle$
$\rightarrow\langle g(\mathrm{a}-g(\operatorname{loop} \llbracket \mathrm{~b}-\mathrm{c} \rrbracket-\operatorname{loop} \llbracket \mathrm{d} \rrbracket))\rangle$
$\rightarrow\langle g(\mathrm{a}-g(g(\operatorname{loop} \llbracket \mathrm{~b} \rrbracket-\operatorname{loop} \llbracket \mathrm{c} \rrbracket)-\operatorname{loop} \llbracket \mathrm{d} \rrbracket))\rangle$
$\rightarrow\langle g(\mathrm{a}-g(g(\mathrm{~b}-\mathrm{c})-\operatorname{loop} \llbracket \mathrm{d} \rrbracket))\rangle$
$\rightarrow\langle$ let $\mathrm{e} 1=\mathrm{b}-\mathrm{c}$ in $\langle g(\mathrm{a}-g(\mathrm{e} 1-\operatorname{loop} \llbracket \mathrm{d} \rrbracket))\rangle\rangle$

A-normalization

P. Thiemann "Cogen in Six Lines," ICFP 1996.

- The paper describes how to write a compiler generator ("cogen") for λ-calculus.
- Three lines for variable, abstraction, and application.
- Six lines because each has static/dynamic variants.
- A-normalization (via shift/reset) is crucially used to serialize expressions.
- The technique also known as "let insertion" in partial evaluation.

How to wrap continuations

shift (fun k -> fun () -> k "hello")

Abort The current computation is aborted with a thunk.

Access lt receives () from outside the context.
Resume The aborted computation is resumed with "hello".

How to wrap continuations

reset (fun () ->

$$
\begin{aligned}
& \text { shift (fun k }->\text { fun () -> k "hello") } \\
& \text { " world") () }
\end{aligned}
$$

\downarrow Abort
reset (fun () ->

$$
k=\frac{\operatorname{fun}()->k \text { "hello" })(\text { () }}{\text { reset (fun () -> [] " world") }}
$$

\downarrow Access
(fun () -> k "hello") ()
\downarrow Resume
reset (fun () -> "hello" ^ " world")

How to wrap continuations: printf

Fill in the hole so that the following program:
reset (fun () ->
"hello " ~ [...] ~ "!") "world" ;
would return "hello world!". (The hole acts as \%s.)
Can you fill in the following hole:
reset (fun () ->

$$
\text { "It's " ~ [...] ~ " o’clock!") } 8 \text {;; }
$$

so that it returns "It's 8 o'clock!"? (\%d)

Solution

reset (fun () ->

"hello " -
shift (fun k \rightarrow fun $x \rightarrow k$ x) -
"!") "world" ; ;
or even shift (fun k -> k) would do.
reset (fun () ->
"It's " -
shift (fun k ->
fun x -> k (string_of_int x)) -
" o'clock!") 8 ;

How to wrap continuations: printf

The shown solution uses shift and reset.
O. Danvy "Functional Unparsing," JFP 1998.

- This paper shows how printf can be written type-safe in the standard functional languages (without dependent types).
- It is written in continuation-passing style (CPS) and uses continuation in a non-trivial way.

State monad

Define the following without using a mutable cell: put stores a value into a mutable cell, and get retrives a value from the mutable cell.

For example, the following expression evaluates to 11 .
put 3; (get () + put 4; get ()) + get ()

idea

Let the context higher-order, and the mutable cell is passed outside the context (just as we did for printf).

State monad

reset (fun () -> ... expression ...) 0
The cell (0) is passed as an argument of the context.
let get () = shift (fun k \rightarrow fun v $->\mathrm{k} v \mathrm{v}$)
let put $v=\operatorname{shift}\left(f u n k->f u n ~ _~ k ~() ~ v\right) ~$
For example,
reset (fun () -> ...[get ()]...) 0
\rightarrow reset (fun () -> fun v $->\mathrm{k} v \mathrm{v}$) 0
-> (fun v -> k v v) 0
-> k 00
-> reset (fun () -> ...[0]...) 0

State monad

A. Filinski "Representing Monads," POPL 1994.

- Any monads can be represented in direct style using shift/reset.
■ Includes complete code in SML.

Future: shift/reset in theorem proving?

The current proof assistants do not allow exception (nor shift/reset).

If we could introduce shift and reset into theorem proving, we are liberated from writing monadic proofs.

Questions:
■ Curry-Howard isomorphism for shift and reset?

- What is the type of shift?

■ What is the logical meaning of shift?

Curry-Howard isomorphism

Typed functional language

$$
\Gamma \vdash \mathrm{e}: A
$$

"Under type environment Γ, e has type A."

$$
\overline{\Gamma, \mathrm{x}: A \vdash \mathrm{x}: A}
$$

$$
\Gamma, \mathrm{x}: B \vdash \mathrm{e}: A
$$

$\bar{\Gamma}$ fun $\mathrm{x} \rightarrow \mathrm{e}: B \rightarrow A$
$\frac{\Gamma \vdash \mathrm{f}: B \rightarrow A \quad \Gamma \vdash \mathrm{a}: B}{\Gamma \vdash \mathrm{f} a: A}$
e has type A
if $\vdash \mathrm{e}: A$ can be derived.

Intuitionistic logic
$\Delta \vdash A$
"Under assumption Δ, A holds."
$\overline{\Delta, A \vdash A}$
$\Delta, B \vdash A$
$\overline{\Delta \vdash B \supset A}$
$\frac{\Delta \vdash B \supset A \quad \Delta \vdash B}{\Delta \vdash A}$
A holds
if $\vdash A$ can be derived.

What is the type of shift?

We have to take the type of the context into account.
■ Pure (non-shift) expression can appear in any context (answer-type polymorphic).
■ Shift restricts the type of its context.
The function put and get can appear only in the higher-order context.
In general, a function type has the form:
impure A -> B @cps[C, D]
pure $\forall \alpha . \mathrm{A} \rightarrow \mathrm{B} \operatorname{@cps}[\alpha, \alpha] \cong \mathrm{A} \rightarrow \mathrm{B}$
What does this type mean logically?
T. Griffin "A Formulae-as-Types Notion of Control," POPL 1990.

- call/cc has type $((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$, which is classic (Peirce's law).
■ It does not take the answer type into account. What about shift?

■ Shift moves around a part of computation.

- Logically, it cuts and pastes a part of proof tree.

■ Is this somehow meaning of A B @cps[C, D]?

Conjecture

Shift is intuitionistic: even if we use shift, we cannot construct a term having a classic type.

Summary

- Shift and reset are simple, but quite expressive.
- We have a type system for shift and reset, but their relationship to logic is unknown.

Q: We can always turn a program with shift/reset into a program without by CPS transforamtion. Are shift/reset really necessary?
A: Yes, just like higher-order functions whose necessity must have been questioned long time ago. They provide us with higher level of abstraction.

How to use shift/reset

OchaCaml

shift/reset-extension of Caml Light:
http://pllab.is.ocha.ac.jp/~asai/OchaCaml
Scheme Racket and Gauche support shift/reset.
Haskell Delimcc Library.
Scala Implementation via selective CPS translation.
OCaml Delimcc Library or emulation via call/cc.

Happy programming with shift and reset!

