
Title Basics Haskell co-routine printf search Finish

CW 2011 Tutorial:
Introduction to

Programming with Shift and Reset

Kenichi Asai Oleg Kiselyov

September 23, 2011

Thanks to: Kazu Yamamoto (IIJ)

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Overview

Basics
What are continuations?
What are delimited continuations?
How to discard/extract continuations.

How to use delimited continuations in Haskell

Challenge 1: co-routine

Challenge 2: printf

Challenge 3: search

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

What are continuations?

Continuation
The rest of the computation.

The current computation: · · · inside []

The rest of the computation: · · · outside []

For example: 3 + [5 ∗ 2]− 1.

The current computation: 5 ∗ 2

The current continuation: 3 + [·]− 1.

“Given a value for [·], add 3 to it and sbtract 1 from
the sum.” i.e., fun x -> 3 + x - 1

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

What are continuations?

Continuation
The rest of the computation.

Continuations are the computation that is discarded
when the current computation is aborted.

For example: 3 + [5 ∗ 2]− 1.

Replace [·] with raise Abort:

3 + [raise Abort]− 1

The discarded computation 3 + [·]− 1 is the
current continuation.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

What are continuations?

As computation proceeds, continuation changes.

3 + [5 ∗ 2]− 1:

The current computation: 5 ∗ 2

The current continuation: 3 + [·]− 1.

[3 + 10]− 1:

The current computation: 3 + 10

The current continuation: [·]− 1.

[13 − 1]:

The current computation: 13 − 1

The current continuation: [·].
Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Exercise
Identify the current expression, continuation, and their
types.

1 5 * (2 * 3 + 3 * 4)

2 (if 2 = 3 then "hello" else "hi") ^" world"

3 fst (let x = 1 + 2 in (x, x))

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] :
5 * ([·] + 3 * 4) :

2 (if 2 = 3 then "hello" else "hi") ^" world"

3 fst (let x = 1 + 2 in (x, x))

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int ->

2 (if 2 = 3 then "hello" else "hi") ^" world"

3 fst (let x = 1 + 2 in (x, x))

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if 2 = 3 then "hello" else "hi") ^" world"

3 fst (let x = 1 + 2 in (x, x))

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] :
(if [·] ...) ^ " world" :

3 fst (let x = 1 + 2 in (x, x))

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool ->

3 fst (let x = 1 + 2 in (x, x))

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

3 fst (let x = 1 + 2 in (x, x))

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

3 fst (let x = [1 + 2] in (x, x))

[1 + 2] :
fst (let x = [·] in (x, x)) :

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

3 fst (let x = [1 + 2] in (x, x))

[1 + 2] : int
fst (let x = [·] in (x, x)) : int ->

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

3 fst (let x = [1 + 2] in (x, x))

[1 + 2] : int
fst (let x = [·] in (x, x)) : int -> int

4 string_length ("x" ^ string_of_int (3 + 1))

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

3 fst (let x = [1 + 2] in (x, x))

[1 + 2] : int
fst (let x = [·] in (x, x)) : int -> int

4 string_length ("x" ^ string_of_int [3 + 1])

[3 + 1] :
string_length ("x" ^ string_of_int [·]) :

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

3 fst (let x = [1 + 2] in (x, x))

[1 + 2] : int
fst (let x = [·] in (x, x)) : int -> int

4 string_length ("x" ^ string_of_int [3 + 1])

[3 + 1] : int
string_length ("x" ^ string_of_int [·]) : int ->

Exercise
Identify the current expression, continuation, and their
types.

1 5 * ([2 * 3] + 3 * 4)

[2 * 3] : int
5 * ([·] + 3 * 4) : int -> int

2 (if [2 = 3] then "hello" else "hi") ^" world"

[2 = 3] : bool
(if [·] ...) ^ " world" : bool -> string

3 fst (let x = [1 + 2] in (x, x))

[1 + 2] : int
fst (let x = [·] in (x, x)) : int -> int

4 string_length ("x" ^ string_of_int [3 + 1])

[3 + 1] : int
string_length ("x" ^ string_of_int [·]) : int -> int

Title Basics Haskell co-routine printf search Finish

What are delimited continuations?

Delimited Continuation
The rest of the computation up to the delimiter.

Syntax

reset (fun () -> M)

For example:

reset (fun () -> 3 + [5 * 2]) - 1

The current computation: 5 ∗ 2

The current delimited continuation: 3 + [·].

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

What are delimited continuations?

The delimiter reset is like an exception handler.

For example:

reset (fun () -> 3 + [5 * 2]) - 1

Replace reset with try ... with:

(try 3 + [raise Abort] with Abort -> 0) - 1

The discarded computation 3 + [·] is the current
delimited continuation.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 :

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" :

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" : bool -> string

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" : bool -> string

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

let x = [·] in (x, x) :

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" : bool -> string

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

let x = [·] in (x, x) : int -> int * int

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" : bool -> string

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

let x = [·] in (x, x) : int -> int * int

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

"x" ^ string_of_int [·] :

Exercise
Identify the delimited continuation, and its type.

1 5 * reset (fun () -> [2 * 3] + 3 * 4)

[·] + 3 * 4 : int -> int

2 reset (fun () ->

if [2 = 3] then "hello" else "hi")

^ " world"

if [·] then "hello" else "hi" : bool -> string

3 fst (reset (fun () ->

let x = [1 + 2] in (x, x)))

let x = [·] in (x, x) : int -> int * int

4 string_length (reset (fun () ->

"x" ^ string_of_int [3 + 1]))

"x" ^ string_of_int [·] : int -> string

Title Basics Haskell co-routine printf search Finish

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes M .

For example:

reset (fun () -> 3 + [shift (fun k -> M)]) - 1

We will see a number of examples today.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes M .

For example:

reset (fun () -> [shift (fun k -> M)]) - 1

We will see a number of examples today.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes M .

For example:

reset (fun () -> [shift (fun k -> M)]) - 1

k = reset (fun () -> 3 + [·])

We will see a number of examples today.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

shift

Syntax

shift (fun k -> M)

It clears the current continuation,

binds the cleared continuation to k, and

executes M .

For example:

reset (fun () -> M) - 1

k = reset (fun () -> 3 + [·])

We will see a number of examples today.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to discard continuations

shift (fun _ -> M)

Captured continuation is discarded.

The same as raising an exception.

For example:

reset (fun () -> 3 + shift (fun _ -> 2)) - 1

reset (fun () -> 2) - 1

k = reset (fun () -> 3 + [·])

2 - 1

1

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Exercise
Replace [·] with shift (fun _ -> M) for some M .
Try out in your computer to see what happens.

1 5 * reset (fun () -> [·] + 3 * 4)

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

3 fst (reset (fun () ->

let x = [·] in (x, x)))

4 string_length (reset (fun () ->

"x" ^ string_of_int [·]))

Exercise
Replace [·] with shift (fun _ -> M) for some M .
Try out in your computer to see what happens.

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> ?)

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> ?)

3 fst (reset (fun () ->

let x = [·] in (x, x)))

shift (fun _ -> ?)

4 string_length (reset (fun () ->

"x" ^ string_of_int [·]))

shift (fun _ -> ?)

Exercise
Replace [·] with shift (fun _ -> M) for some M .
Try out in your computer to see what happens.

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> 3) ; 15

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> ?)

3 fst (reset (fun () ->

let x = [·] in (x, x)))

shift (fun _ -> ?)

4 string_length (reset (fun () ->

"x" ^ string_of_int [·]))

shift (fun _ -> ?)

Exercise
Replace [·] with shift (fun _ -> M) for some M .
Try out in your computer to see what happens.

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> 3) ; 15

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> "chao") ; ”chao world”

3 fst (reset (fun () ->

let x = [·] in (x, x)))

shift (fun _ -> ?)

4 string_length (reset (fun () ->

"x" ^ string_of_int [·]))

shift (fun _ -> ?)

Exercise
Replace [·] with shift (fun _ -> M) for some M .
Try out in your computer to see what happens.

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> 3) ; 15

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> "chao") ; ”chao world”

3 fst (reset (fun () ->

let x = [·] in (x, x)))

shift (fun _ -> (3, 4)) ; 3

4 string_length (reset (fun () ->

"x" ^ string_of_int [·]))

shift (fun _ -> ?)

Exercise
Replace [·] with shift (fun _ -> M) for some M .
Try out in your computer to see what happens.

1 5 * reset (fun () -> [·] + 3 * 4)

shift (fun _ -> 3) ; 15

2 reset (fun () ->

if [·] then "hello" else "hi")

^ " world"

shift (fun _ -> "chao") ; ”chao world”

3 fst (reset (fun () ->

let x = [·] in (x, x)))

shift (fun _ -> (3, 4)) ; 3

4 string_length (reset (fun () ->

"x" ^ string_of_int [·]))

shift (fun _ -> "great day!") ; 10

Title Basics Haskell co-routine printf search Finish

Advanced Exercise

The following function multiplies elements of a list:

(* times : int list -> int *)

let rec times lst = match lst with

[] -> 1

| first :: rest -> first * times rest ;;

Add the following clause:

| 0 :: rest -> ???

so that calls like the following will return 0 without
performing any multiplication.

reset (fun () -> times [1; 2; 0; 4]) ;;

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Solution

let rec times lst = match lst with

[] -> 1

| 0 :: rest -> shift (fun _ -> 0)

| first :: rest -> first * times rest ;;

times : int list => int = <fun>

reset (fun () -> times [1; 2; 0; 4]) ;;

- : int = 0

reset (fun () -> times [1; 2; 3; 4]) ;;

- : int = 24

#

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to extract continuations

shift (fun k -> k)

Captured continuation is returned immediately.

We can play with the captured contiuation!

For example: reset (fun () -> 3 + [...] - 1)

let f =

reset (fun () -> 3 + shift (fun k -> k) - 1) ;;

f : int => int = <fun>

f 10 ;;

- : int = 12

#

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to extract continuations

shift (fun k -> k)

Captured continuation is returned immediately.

We can play with the captured contiuation!

For example: reset (fun () -> 3 + [...] - 1)

let f x =

reset (fun () -> 3 + shift (fun k -> k) - 1) x ;;

f : int -> int = <fun>

f 10 ;;

- : int = 12

#

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Exercise
Extract the following continuation.
What does it do? Try out in your computer.

1 reset (fun () -> 5 * ([·] + 3 * 4))

2 reset (fun () ->

(if [·] then "hello" else "hi") ^ " world")

3 reset (fun () ->

fst (let x = [·] in (x, x)))

4 reset (fun () ->

string_length ("x" ^ string_of_int [·]))

Exercise
Extract the following continuation.
What does it do? Try out in your computer.

1 reset (fun () -> 5 * ([·] + 3 * 4))

f 6 ; 90

2 reset (fun () ->

(if [·] then "hello" else "hi") ^ " world")

f true ; "hello world"

f false ; "hi world"

3 reset (fun () ->

fst (let x = [·] in (x, x)))

identity function

4 reset (fun () ->

string_length ("x" ^ string_of_int [·]))

f 0 ; 2, f 10 ; 3, f 100 ; 4

Title Basics Haskell co-routine printf search Finish

Advanced Exercise

Here is an identity function on a list:

(* id : ’a list -> ’a list *)

let rec id lst = match lst with

[] -> [] (* A *)

| first :: rest -> first :: id rest ;;

By modifying the line (* A *), extract the continuation
at (* A *) when called as follows:

reset (fun () -> id [1; 2; 3]) ;;

What does the extracted continuation do?

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Solution

let rec id lst = match lst with

[] -> shift (fun k -> k)

| first :: rest -> first :: id rest ;;

id : ’a list => ’a list = <fun>

let append123 =

reset (fun () -> id [1; 2; 3]) ;;

append123 : int list => int list = <fun>

append123 [4; 5; 6] ;;

- : int list = [1; 2; 3; 4; 5; 6]

#

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Haskell time

Title Basics Haskell co-routine printf search Finish

Challenge 1

co-routine

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Tree walking

Consider a binary tree of integers:

type tree_t = Empty

| Node of tree_t * int * tree_t

We can write a function that traverses over a tree:

(* walk : tree_t -> unit *)

let rec walk tree = match tree with

Empty -> ()

| Node (t1, n, t2) ->

walk t1;

print_int n;

walk t2 ;;

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Tree walking

tree1:
2

1 3
For example, we have:

let tree1 =

Node (Node (Empty, 1, Empty), 2,

Node (Empty, 3, Empty)) ;;

tree1 : tree_t = ...

walk tree1 ;;

123- : unit = ()

#

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Tree walking

Can we write a variant of walk that returns integers one
by one?

(* walk : tree_t -> unit *)

let rec walk tree = match tree with

Empty -> ()

| Node (t1, n, t2) ->

walk t1;

yield n;

walk t2 ;;

yield returns n and “the way to get more integers”

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to preserve continuations

type result_t =

Done (* no more Nodes *)

| Next of int *

(unit -> result_t)

We can then define yield as follows:

let yield n = shift (fun k -> Next (n, k))

Captured continuation is preserved in Next and
returned to the enclosing reset.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to preserve continuations

type ’a result_t =

Done (* no more Nodes *)

| Next of int *

(unit / ’a -> ’a result_t / ’a)

We can then define yield as follows:

let yield n = shift (fun k -> Next (n, k))

Captured continuation is preserved in Next and
returned to the enclosing reset.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to preserve continuations

(* start : tree_t -> ’a result_t *)

let start tree =

reset (fun () -> walk tree; Done) ;;

(* print_nodes : tree_t -> unit *)

let print_nodes tree =

let rec loop r = match r with

Done -> () (* no more nodes *)

| Next (n, k) ->

print_int n; (* print n *)

loop (k ()) in (* and continue *)

loop (start tree) ;;
Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Exercise

1 Try print_nodes in your computer.

2 Similarly, can you write a function that returns the
sum of all the integers in a tree?

(* add_tree : tree_t -> int *)

let add_tree tree =

...

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Exercise

1 Try print_nodes in your computer.

2 Similarly, can you write a function that returns the
sum of all the integers in a tree?

(* add_tree : tree_t -> int *)

let add_tree tree =

let rec loop r = match r with

Done -> 0

| Next (n, k) -> n + loop (k ()) in

loop (start tree) ;;

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Challenge 1: co-routine

Write a function same_fringe.

same_fringe tree1 tree2 ;;

evaluates to true if the ‘fringe’ of
the two trees are the same, and
false otherwise.

Note:
When mismatch is detected, we
want to return false without
further traversing the trees.
(We do not want to flatten trees.)

For example,

2

1 4

3 5

4

2

1 3

5

tree1 tree2

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Solution

(* same_fringe : tree_t -> tree_t -> bool *)

let same_fringe t1 t2 =

let rec loop r1 r2 = match (r1, r2) with

(Done, Done) -> true

| (Next (n1, k1), Next (n2, k2)) ->

n1 = n2 && loop (k1 ()) (k2 ())

| (_, _) -> false in

loop (start t1) (start t2) ;;

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Challenge 2

printf

Well, we are not going to use libc library...

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to wrap continuations

shift (fun k -> fun () -> k "hello")

Abort The current computation is aborted with a
thunk.

Access It receives () from outside the context.
Resume The aborted computation is resumed with

"hello".

For example,

reset (fun () ->

shift (fun k -> fun () -> k "hello")

^ " world") ()

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to wrap continuations

reset (fun () ->

shift (fun k -> fun () -> k "hello")

^ " world") ()

reset (fun () -> fun () -> k "hello") ()

k = reset (fun () -> [] ^ " world")

(fun () -> k "hello") ()

reset (fun () -> "hello" ^ " world")

Code is effectively inserted around reset.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Challenge 2: printf

Fill in the hole so that the following program:

reset (fun () -> "hello " ^ [...] ^ "!") "world" ;;

would return "hello world!". Can you fill in the
following hole:

reset (fun () -> "It’s " ^ [...] ^ " o’clock!") 8 ;;

so that it returns "It’s 8 o’clock!"?

Hint: You can use string_of_int.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Solution

reset (fun () ->

"hello " ^ shift (fun k -> fun x -> k x) ^ "!")

"world" ;;

or even shift (fun k -> k) would do.

reset (fun () ->

"It’s " ^

shift (fun k -> fun x -> k (string_of_int x)) ^

" o’clock!")

8 ;;

The same idea can be used to implement a state monad.
Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Answer type modification

reset (fun () ->

"hello " ^ shift (fun k -> fun x -> k x) ^ "!")

"world" ;;

The body of reset appears to be a string:

reset (fun () -> "hello " ^ [] ^ "!")

How can we pass an argument "world" to it?

Because shift replaces the context with:

fun x -> k x

Answer type changes from: string
to: string -> string.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Challenge 3

search

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to duplicate continuations

let either a b =

shift (fun k -> k a; k b) ;;

Captured continuation is used twice.
The caller of either receives both a and b.

reset (fun () ->

let x = either 0 1 in

print_int x; print_newline ()) ;;

0

1

- : unit = ()

#
Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Generate and test

Is the following logical formula satisfiable?

(P ∨ Q) ∧ (P ∨ ¬Q) ∧ (¬P ∨ ¬Q)

reset (fun () ->

let p = either true false in

let q = either true false in

if (p || q) && (p || not q) && (not p || not q)

then (print_string (string_of_bool p);

print_string ", ";

print_string (string_of_bool q);

print_newline ())) ;;

true, false

- : unit = ()

#

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

Challenge 3: search

1 Define a recursive function choice that receives a
list of values and returns all the elements of the list
to the continuation one after the other.

2 Using choice, define a function that searches for
three natural numbers between 1 and 5 that satisfy
the Pythagorean theorem:

Find: 1 ≤ x, y, z ≤ 5, s.t. x2 + y2 = z2.

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

(* choice : ’a list => ’a *)

let choice lst =

let rec loop k lst = match lst with

[] -> ()

| first :: rest -> k first; loop k rest in

shift (fun k -> loop k lst) ;;

(* search : unit => unit *)

let search () =

let x = choice [1; 2; 3; 4; 5] in

let y = choice [1; 2; 3; 4; 5] in

let z = choice [1; 2; 3; 4; 5] in

if x * x + y * y = z * z

then (print_int x; print_string " ";

print_int y; print_string " ";

print_int z; print_newline ()) ;;

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

Title Basics Haskell co-routine printf search Finish

How to use shift/reset
in other languages

Scheme Racket and Gauche support shift/reset.

Haskell Delimcc Library.

Scala Implementation via selective CPS translation.

OCaml Delimcc Library or emulation via call/cc.

Happy programming with
shift and reset!

Kenichi Asai, Oleg Kiselyov Introduction to Programming with Shift and Reset

	Title
	Basics
	Haskell
	co-routine
	printf
	search
	Finish

